from clearml import PipelineDecorator from llm_engineering.model.finetuning.sagemaker import run_finetuning_on_sagemaker @PipelineDecorator.component(name="train") def train( finetuning_type: str, num_train_epochs: int, per_device_train_batch_size: int, learning_rate: float, dataset_huggingface_workspace: str = "mlabonne", is_dummy: bool = False, ) -> None: run_finetuning_on_sagemaker( finetuning_type=finetuning_type, num_train_epochs=num_train_epochs, per_device_train_batch_size=per_device_train_batch_size, learning_rate=learning_rate, dataset_huggingface_workspace=dataset_huggingface_workspace, is_dummy=is_dummy, )