Spaces:
Sleeping
Sleeping
File size: 19,863 Bytes
613af8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
#include "llama-grammar.h"
#include "llama-vocab.h"
#include "llama-sampling.h"
#include <algorithm>
// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
const std::string & src,
llama_partial_utf8 partial_start) {
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
const char * pos = src.c_str();
std::vector<uint32_t> code_points;
// common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
code_points.reserve(src.size() + 1);
uint32_t value = partial_start.value;
int n_remain = partial_start.n_remain;
// continue previous decode, if applicable
while (*pos != 0 && n_remain > 0) {
uint8_t next_byte = static_cast<uint8_t>(*pos);
if ((next_byte >> 6) != 2) {
// invalid sequence, abort
code_points.push_back(0);
return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
}
value = (value << 6) + (next_byte & 0x3F);
++pos;
--n_remain;
}
if (partial_start.n_remain > 0 && n_remain == 0) {
code_points.push_back(value);
}
// decode any subsequent utf-8 sequences, which may end in an incomplete one
while (*pos != 0) {
uint8_t first_byte = static_cast<uint8_t>(*pos);
uint8_t highbits = first_byte >> 4;
n_remain = lookup[highbits] - 1;
if (n_remain < 0) {
// invalid sequence, abort
code_points.clear();
code_points.push_back(0);
return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
}
uint8_t mask = (1 << (7 - n_remain)) - 1;
value = first_byte & mask;
++pos;
while (*pos != 0 && n_remain > 0) {
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
++pos;
--n_remain;
}
if (n_remain == 0) {
code_points.push_back(value);
}
}
code_points.push_back(0);
return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
}
const llama_grammar_rules & llama_grammar_get_rules(const struct llama_grammar * grammar) {
return grammar->rules;
}
llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar) {
return grammar->stacks;
}
// returns true iff pos points to the end of one of the definitions of a rule
static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
switch (pos->type) {
case LLAMA_GRETYPE_END: return true; // NOLINT
case LLAMA_GRETYPE_ALT: return true; // NOLINT
default: return false;
}
}
// returns true iff chr satisfies the char range at pos (regular or inverse range)
// asserts that pos is pointing to a char range element
static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
const llama_grammar_element * pos,
const uint32_t chr) {
bool found = false;
bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
do {
if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
// inclusive range, e.g. [a-z]
found = found || (pos->value <= chr && chr <= pos[1].value);
pos += 2;
} else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
// Any character matches "."
found = true;
pos += 1;
} else {
// exact char match, e.g. [a] or "a"
found = found || pos->value == chr;
pos += 1;
}
} while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
return std::make_pair(found == is_positive_char, pos);
}
// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
// range at pos (regular or inverse range)
// asserts that pos is pointing to a char range element
static bool llama_grammar_match_partial_char(
const llama_grammar_element * pos,
const llama_partial_utf8 partial_utf8) {
bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
uint32_t partial_value = partial_utf8.value;
int n_remain = partial_utf8.n_remain;
// invalid sequence or 7-bit char split across 2 bytes (overlong)
if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
return false;
}
// range of possible code points this partial UTF-8 sequence could complete to
uint32_t low = partial_value << (n_remain * 6);
uint32_t high = low | ((1 << (n_remain * 6)) - 1);
if (low == 0) {
if (n_remain == 2) {
low = 1 << 11;
} else if (n_remain == 3) {
low = 1 << 16;
}
}
do {
if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
// inclusive range, e.g. [a-z]
if (pos->value <= high && low <= pos[1].value) {
return is_positive_char;
}
pos += 2;
} else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
// Any character matches "."
return true;
} else {
// exact char match, e.g. [a] or "a"
if (low <= pos->value && pos->value <= high) {
return is_positive_char;
}
pos += 1;
}
} while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
return !is_positive_char;
}
// transforms a grammar pushdown stack into N possible stacks, all ending
// at a character range (terminal element)
static void llama_grammar_advance_stack(
const llama_grammar_rules & rules,
const llama_grammar_stack & stack,
llama_grammar_stacks & new_stacks) {
if (stack.empty()) {
if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
new_stacks.emplace_back(stack);
}
return;
}
const llama_grammar_element * pos = stack.back();
switch (pos->type) {
case LLAMA_GRETYPE_RULE_REF: {
const size_t rule_id = static_cast<size_t>(pos->value);
const llama_grammar_element * subpos = rules[rule_id].data();
do {
// init new stack without the top (pos)
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos + 1)) {
// if this rule ref is followed by another element, add that to stack
new_stack.push_back(pos + 1);
}
if (!llama_grammar_is_end_of_sequence(subpos)) {
// if alternate is nonempty, add to stack
new_stack.push_back(subpos);
}
llama_grammar_advance_stack(rules, new_stack, new_stacks);
while (!llama_grammar_is_end_of_sequence(subpos)) {
// scan to end of alternate def
subpos++;
}
if (subpos->type == LLAMA_GRETYPE_ALT) {
// there's another alternate def of this rule to process
subpos++;
} else {
break;
}
} while (true);
break;
}
case LLAMA_GRETYPE_CHAR:
case LLAMA_GRETYPE_CHAR_NOT:
case LLAMA_GRETYPE_CHAR_ANY:
if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
// only add the stack if it's not a duplicate of one we already have
new_stacks.emplace_back(stack);
}
break;
default:
// end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
// (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
// those
GGML_ABORT("fatal error");
}
}
// takes a set of possible pushdown stacks on a grammar, which are required to
// be positioned at a character range (see `llama_grammar_advance_stack`), and
// produces the N possible stacks if the given char is accepted at those
// positions
void llama_grammar_accept(
const llama_grammar_rules & rules,
const llama_grammar_stacks & stacks,
const uint32_t chr,
llama_grammar_stacks & new_stacks) {
new_stacks.clear();
for (const auto & stack : stacks) {
if (stack.empty()) {
continue;
}
auto match = llama_grammar_match_char(stack.back(), chr);
if (match.first) {
const llama_grammar_element * pos = match.second;
// update top of stack to next element, if any
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos)) {
new_stack.push_back(pos);
}
llama_grammar_advance_stack(rules, new_stack, new_stacks);
}
}
}
static llama_grammar_candidates llama_grammar_reject_candidates(
const llama_grammar_rules & rules,
const llama_grammar_stacks & stacks,
const llama_grammar_candidates & candidates) {
GGML_ASSERT(!stacks.empty()); // REVIEW
if (candidates.empty()) {
return {};
}
auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
for (size_t i = 1, size = stacks.size(); i < size; ++i) {
rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
}
return rejects;
}
llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
const llama_grammar_rules & rules,
const llama_grammar_stack & stack,
const llama_grammar_candidates & candidates) {
llama_grammar_candidates rejects;
rejects.reserve(candidates.size());
if (stack.empty()) {
for (const auto & tok : candidates) {
if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
rejects.push_back(tok);
}
}
return rejects;
}
const llama_grammar_element * stack_pos = stack.back();
llama_grammar_candidates next_candidates;
next_candidates.reserve(candidates.size());
for (const auto & tok : candidates) {
if (*tok.code_points == 0) {
// reached end of full codepoints in token, reject iff it ended in a partial sequence
// that cannot satisfy this position in grammar
if (tok.partial_utf8.n_remain != 0 &&
!llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
rejects.push_back(tok);
}
} else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
} else {
rejects.push_back(tok);
}
}
const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
// update top of stack to next element, if any
llama_grammar_stack stack_after(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
stack_after.push_back(stack_pos_after);
}
llama_grammar_stacks next_stacks;
llama_grammar_advance_stack(rules, stack_after, next_stacks);
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
for (const auto & tok : next_rejects) {
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
}
return rejects;
}
static bool llama_grammar_detect_left_recursion(
const llama_grammar_rules & rules,
size_t rule_index,
std::vector<bool> * rules_visited,
std::vector<bool> * rules_in_progress,
std::vector<bool> * rules_may_be_empty) {
if ((*rules_in_progress)[rule_index]) {
return true;
}
(*rules_in_progress)[rule_index] = true;
const llama_grammar_rule & rule = rules[rule_index];
// First check if the rule might produce the empty string. This could be done combined with the second
// step but it's more readable as two steps.
bool at_rule_start = true;
for (size_t i = 0; i < rule.size(); i++) {
if (llama_grammar_is_end_of_sequence(&rule[i])) {
if (at_rule_start) {
(*rules_may_be_empty)[rule_index] = true;
break;
}
at_rule_start = true;
} else {
at_rule_start = false;
}
}
// Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
// be empty)
bool recurse_into_nonterminal = true;
for (size_t i = 0; i < rule.size(); i++) {
if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
return true;
}
if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
recurse_into_nonterminal = false;
}
} else if (llama_grammar_is_end_of_sequence(&rule[i])) {
recurse_into_nonterminal = true;
} else {
recurse_into_nonterminal = false;
}
}
(*rules_in_progress)[rule_index] = false;
(*rules_visited)[rule_index] = true;
return false;
}
//
// grammar - external
//
struct llama_grammar * llama_grammar_init_impl(
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index) {
const llama_grammar_element * pos;
// copy rule definitions into vectors
llama_grammar_rules vec_rules(n_rules);
for (size_t i = 0; i < n_rules; i++) {
for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
vec_rules[i].push_back(*pos);
}
vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
}
// Check for left recursion
std::vector<bool> rules_visited(n_rules);
std::vector<bool> rules_in_progress(n_rules);
std::vector<bool> rules_may_be_empty(n_rules);
for (size_t i = 0; i < n_rules; i++) {
if (rules_visited[i]) {
continue;
}
if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
LLAMA_LOG_ERROR("unsupported grammar, left recursion detected for nonterminal at index %zu", i);
return nullptr;
}
}
// loop over alternates of start rule to build initial stacks
llama_grammar_stacks stacks;
pos = vec_rules[start_rule_index].data();
do {
llama_grammar_stack stack;
if (!llama_grammar_is_end_of_sequence(pos)) {
// if alternate is nonempty, add to stack
stack.push_back(pos);
}
llama_grammar_advance_stack(vec_rules, stack, stacks);
while (!llama_grammar_is_end_of_sequence(pos)) {
// scan to end of alternate def
pos++;
}
if (pos->type == LLAMA_GRETYPE_ALT) {
// there's another alternate def of this rule to process
pos++;
} else {
break;
}
} while (true);
// Important: vec_rules has to be moved here, not copied, because stacks contains
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
// then the pointers would be invalidated when the local vec_rules goes out of scope.
return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
}
void llama_grammar_free_impl(struct llama_grammar * grammar) {
delete grammar;
}
struct llama_grammar * llama_grammar_copy_impl(const struct llama_grammar * grammar) {
llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
// redirect elements in stacks to point to new rules
for (size_t is = 0; is < result->stacks.size(); is++) {
for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
result->stacks[is][ie] = &result->rules[ir0][ir1];
}
}
}
}
}
return result;
}
void llama_grammar_sample_impl(const struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token_data_array * candidates) {
GGML_ASSERT(grammar);
GGML_ASSERT(vocab);
int64_t t_start_sample_us = ggml_time_us();
bool allow_eog = false;
for (const auto & stack : grammar->stacks) {
if (stack.empty()) {
allow_eog = true;
break;
}
}
std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
candidates_decoded.reserve(candidates->size);
llama_grammar_candidates candidates_grammar;
candidates_grammar.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
const llama_token id = candidates->data[i].id;
const std::string & piece = vocab->cache_token_to_piece.at(id);
if (llama_token_is_eog_impl(*vocab, id)) {
if (!allow_eog) {
candidates->data[i].logit = -INFINITY;
}
} else if (piece.empty() || piece[0] == 0) {
candidates->data[i].logit = -INFINITY;
} else {
candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
}
}
const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
for (const auto & reject : rejects) {
candidates->data[reject.index].logit = -INFINITY;
}
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
void llama_grammar_accept_token_impl(struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token token) {
const int64_t t_start_sample_us = ggml_time_us();
if (llama_token_is_eog_impl(*vocab, token)) {
for (const auto & stack : grammar->stacks) {
if (stack.empty()) {
return;
}
}
GGML_ABORT("fatal error");
}
const std::string & piece = vocab->cache_token_to_piece.at(token);
// Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece, grammar->partial_utf8);
const auto & code_points = decoded.first;
llama_grammar_stacks tmp_new_stacks;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
grammar->stacks = tmp_new_stacks;
}
grammar->partial_utf8 = decoded.second;
GGML_ASSERT(!grammar->stacks.empty());
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
|