Spaces:
Sleeping
Sleeping
File size: 22,619 Bytes
613af8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
#include "llama-sampling.h"
#include <algorithm>
#include <cstring>
#include <ctime>
#include <cfloat>
#include <numeric>
#include <unordered_map>
static void llama_log_softmax(float * array, size_t size) {
float max_l = *std::max_element(array, array + size);
float sum = 0.f;
for (size_t i = 0; i < size; ++i) {
float p = expf(array[i] - max_l);
sum += p;
array[i] = p;
}
for (size_t i = 0; i < size; ++i) {
array[i] = logf(array[i] / sum);
}
}
void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed) {
if (seed == LLAMA_DEFAULT_SEED) {
seed = time(NULL);
}
smpl->rng.seed(seed);
}
void llama_sample_softmax_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
GGML_ASSERT(candidates->size > 0);
const int64_t t_start_sample_us = ggml_time_us();
// Sort the logits in descending order
if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
candidates->sorted = true;
}
float max_l = candidates->data[0].logit;
float cum_sum = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
float p = expf(candidates->data[i].logit - max_l);
candidates->data[i].p = p;
cum_sum += p;
}
for (size_t i = 0; i < candidates->size; ++i) {
candidates->data[i].p /= cum_sum;
}
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
// TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
// if (k >= (int32_t)candidates->size) {
// return;
// }
const int64_t t_start_sample_us = ggml_time_us();
if (k <= 0) {
k = candidates->size;
}
k = std::max(k, (int) min_keep);
k = std::min(k, (int) candidates->size);
// Sort scores in descending order
if (!candidates->sorted) {
auto comp = [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
};
if (k <= 128) {
std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
} else {
constexpr int nbuckets = 128;
constexpr float bucket_low = -10.0f;
constexpr float bucket_high = 10.0f;
constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
constexpr float bucket_inter = -bucket_low * bucket_scale;
std::vector<int> bucket_idx(candidates->size);
std::vector<int> histo(nbuckets, 0);
for (int i = 0; i < (int)candidates->size; ++i) {
const float val = candidates->data[i].logit;
int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
ib = std::max(0, std::min(nbuckets-1, ib));
bucket_idx[i] = ib;
++histo[ib];
}
int nhave = 0;
int ib = nbuckets - 1;
for ( ; ib >= 0; --ib) {
nhave += histo[ib];
if (nhave >= k) break;
}
std::vector<llama_token_data> tmp_tokens(nhave);
auto ptr = tmp_tokens.data();
std::vector<llama_token_data*> bucket_ptrs;
bucket_ptrs.reserve(nbuckets - ib);
for (int j = nbuckets - 1; j >= ib; --j) {
bucket_ptrs.push_back(ptr);
ptr += histo[j];
}
for (int i = 0; i < (int)candidates->size; ++i) {
int j = bucket_idx[i];
if (j >= ib) {
*bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
}
}
ptr = tmp_tokens.data();
int ndone = 0;
for (int j = nbuckets-1; j > ib; --j) {
std::sort(ptr, ptr + histo[j], comp);
ptr += histo[j];
ndone += histo[j];
}
std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
}
candidates->sorted = true;
}
candidates->size = k;
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_top_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
if (p >= 1.0f) {
return;
}
llama_sample_softmax_impl(smpl, candidates);
const int64_t t_start_sample_us = ggml_time_us();
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = candidates->size;
for (size_t i = 0; i < candidates->size; ++i) {
cum_sum += candidates->data[i].p;
// Check if the running sum is at least p or if we have kept at least min_keep tokens
// we set the last index to i+1 to indicate that the current iterate should be included in the set
if (cum_sum >= p && i + 1 >= min_keep) {
last_idx = i + 1;
break;
}
}
// Resize the output vector to keep only the top-p tokens
candidates->size = last_idx;
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_min_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
if (p <= 0.0f || !candidates->size) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
bool min_p_applied = false;
// if the candidates aren't sorted, try the unsorted implementation first
if (!candidates->sorted) {
std::vector<llama_token_data> filtered_tokens;
float max_logit = -FLT_MAX;
for (size_t i = 0; i < candidates->size; ++i) {
max_logit = std::max(max_logit, candidates->data[i].logit);
}
const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
for (size_t i = 0; i < candidates->size; ++i) {
if (candidates->data[i].logit >= min_logit) {
filtered_tokens.push_back(candidates->data[i]);
}
}
// if we have enough values the operation was a success
if (filtered_tokens.size() >= min_keep) {
memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
candidates->size = filtered_tokens.size();
min_p_applied = true;
}
}
// if the candidates are sorted or the unsorted implementation failed, use this implementation
if (!min_p_applied) {
// Sort the logits in descending order
if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
candidates->sorted = true;
}
const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
size_t i = 1; // first token always matches
for (; i < candidates->size; ++i) {
if (candidates->data[i].logit < min_logit && i >= min_keep) {
break; // prob too small
}
}
// Resize the output vector to keep only the matching tokens
candidates->size = i;
}
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep) {
if (z >= 1.0f || candidates->size <= 2) {
return;
}
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
const int64_t t_start_sample_us = ggml_time_us();
// Compute the first and second derivatives
std::vector<float> first_derivatives(candidates->size - 1);
std::vector<float> second_derivatives(candidates->size - 2);
for (size_t i = 0; i < first_derivatives.size(); ++i) {
first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
}
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
}
// Calculate absolute value of second derivatives
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = std::abs(second_derivatives[i]);
}
// Normalize the second derivatives
{
const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
if (second_derivatives_sum > 1e-6f) {
for (float & value : second_derivatives) {
value /= second_derivatives_sum;
}
} else {
for (float & value : second_derivatives) {
value = 1.0f / second_derivatives.size();
}
}
}
float cum_sum = 0.0f;
size_t last_idx = candidates->size;
for (size_t i = 0; i < second_derivatives.size(); ++i) {
cum_sum += second_derivatives[i];
// Check if the running sum is greater than z or if we have kept at least min_keep tokens
if (cum_sum > z && i >= min_keep) {
last_idx = i;
break;
}
}
// Resize the output vector to keep only the tokens above the tail location
candidates->size = last_idx;
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_typical_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
// Reference implementation:
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
if (p >= 1.0f) {
return;
}
// Compute the softmax of logits and calculate entropy
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
const int64_t t_start_sample_us = ggml_time_us();
float entropy = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
entropy += -candidates->data[i].p * logf(candidates->data[i].p);
}
// Compute the absolute difference between negative log probability and entropy for each candidate
std::vector<float> shifted_scores;
for (size_t i = 0; i < candidates->size; ++i) {
float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
shifted_scores.push_back(shifted_score);
}
// Sort tokens based on the shifted_scores and their corresponding indices
std::vector<size_t> indices(candidates->size);
std::iota(indices.begin(), indices.end(), 0);
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
return shifted_scores[a] < shifted_scores[b];
});
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = indices.size();
for (size_t i = 0; i < indices.size(); ++i) {
size_t idx = indices[i];
cum_sum += candidates->data[idx].p;
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens
if (cum_sum > p && i >= min_keep - 1) {
last_idx = i + 1;
break;
}
}
// Resize the output vector to keep only the locally typical tokens
std::vector<llama_token_data> new_candidates;
for (size_t i = 0; i < last_idx; ++i) {
size_t idx = indices[i];
new_candidates.push_back(candidates->data[idx]);
}
// Replace the data in candidates with the new_candidates data
std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
candidates->size = new_candidates.size();
candidates->sorted = false;
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_entropy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val) {
const int64_t t_start_sample_us = ggml_time_us();
// no need to do anything if there is only one (or zero) candidates
if(candidates->size <= 1) {
return;
}
// Calculate maximum possible entropy
float max_entropy = -logf(1.0f / candidates->size);
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
// Calculate entropy of the softmax probabilities
float entropy = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
float prob = candidates->data[i].p;
if (prob > 0.0f) { // Ensure no log(0)
entropy -= prob * logf(prob);
}
}
// Normalize the entropy (max_entropy cannot be 0 here because we checked candidates->size != 1 above)
float normalized_entropy = entropy / max_entropy;
// Map the normalized entropy to the desired temperature range using the power function
float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
#ifdef DEBUG
LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
LLAMA_LOG_INFO("Entropy: %f\n", entropy);
LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
#endif
// Apply the dynamically calculated temperature scaling
for (size_t i = 0; i < candidates->size; ++i) {
candidates->data[i].logit /= dyn_temp;
}
// Re-compute softmax probabilities after scaling logits with dynamic temperature
double max_l_double = candidates->data[0].logit;
double cum_sum_double = 0.0;
for (size_t i = 0; i < candidates->size; ++i) {
double p = exp(candidates->data[i].logit - max_l_double);
candidates->data[i].p = p; // Store the scaled probability
cum_sum_double += p;
}
for (size_t i = 0; i < candidates->size; ++i) {
candidates->data[i].p /= cum_sum_double; // Re-normalize the probabilities
}
#ifdef DEBUG
// Print the updated top 25 probabilities after temperature scaling
LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
for (size_t i = 0; i < 25 && i < candidates->size; ++i) {
LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates->data[i].p * 100.0f);
}
#endif
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_temp_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float temp) {
const int64_t t_start_sample_us = ggml_time_us();
for (size_t i = 0; i < candidates->size; ++i) {
candidates->data[i].logit /= temp;
}
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_repetition_penalties_impl(
struct llama_sampling * smpl,
llama_token_data_array * candidates,
const llama_token * last_tokens,
size_t penalty_last_n,
float penalty_repeat,
float penalty_freq,
float penalty_present) {
if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
// Create a frequency map to count occurrences of each token in last_tokens
std::unordered_map<llama_token, int> token_count;
for (size_t i = 0; i < penalty_last_n; ++i) {
token_count[last_tokens[i]]++;
}
// Apply frequency and presence penalties to the candidates
for (size_t i = 0; i < candidates->size; ++i) {
const auto token_iter = token_count.find(candidates->data[i].id);
if (token_iter == token_count.end()) {
continue;
}
const int count = token_iter->second;
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
if (candidates->data[i].logit <= 0) {
candidates->data[i].logit *= penalty_repeat;
} else {
candidates->data[i].logit /= penalty_repeat;
}
candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
}
candidates->sorted = false;
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_apply_guidance_impl(
struct llama_sampling * smpl,
float * logits,
float * logits_guidance,
float scale) {
GGML_ASSERT(smpl);
const auto t_start_sample_us = ggml_time_us();
const auto n_vocab = smpl->n_vocab;
llama_log_softmax(logits, n_vocab);
llama_log_softmax(logits_guidance, n_vocab);
for (int i = 0; i < n_vocab; ++i) {
auto & l = logits[i];
const auto & g = logits_guidance[i];
l = scale * (l - g) + g;
}
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
llama_token llama_sample_token_mirostat_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
GGML_ASSERT(smpl);
const int32_t n_vocab = float(smpl->n_vocab);
int64_t t_start_sample_us = ggml_time_us();
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0;
float sum_ti_bi = 0.0;
float sum_ti_sq = 0.0;
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
float t_i = logf(float(i + 2) / float(i + 1));
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
sum_ti_bi += t_i * b_i;
sum_ti_sq += t_i * t_i;
}
s_hat = sum_ti_bi / sum_ti_sq;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1;
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(n_vocab, -epsilon_hat)), 1 / s_hat);
// Sample the next word X using top-k sampling
llama_sample_top_k_impl((struct llama_sampling *) nullptr, candidates, int(k), 1);
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
llama_token X = llama_sample_token_impl(smpl, candidates);
t_start_sample_us = ggml_time_us();
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
return X;
}
llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu) {
int64_t t_start_sample_us;
t_start_sample_us = ggml_time_us();
llama_sample_softmax_impl(smpl, candidates);
// Truncate the words with surprise values greater than mu
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return -log2f(candidate.p) > *mu;
}));
if (candidates->size == 0) {
candidates->size = 1;
}
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
// Normalize the probabilities of the remaining words
llama_sample_softmax_impl(smpl, candidates);
// Sample the next word X from the remaining words
llama_token X = llama_sample_token_impl(smpl, candidates);
t_start_sample_us = ggml_time_us();
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
}
return X;
}
llama_token llama_sample_token_greedy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
const int64_t t_start_sample_us = ggml_time_us();
// Find max element
auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit < b.logit;
});
llama_token result = max_iter->id;
if (smpl) {
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
smpl->n_sample++;
}
return result;
}
llama_token llama_sample_token_with_rng_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng) {
GGML_ASSERT(smpl);
const int64_t t_start_sample_us = ggml_time_us();
llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
std::vector<float> probs;
probs.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
probs.push_back(candidates->data[i].p);
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
llama_token result = candidates->data[idx].id;
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
smpl->n_sample++;
return result;
}
llama_token llama_sample_token_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
return llama_sample_token_with_rng_impl(smpl, candidates, smpl->rng);
}
|