File size: 10,922 Bytes
613af8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#include "kernel_operator.h"

using namespace AscendC;

#define BUFFER_NUM 2
#define Group_Size 32

template <typename SRC_T>
class QUANTIZE_FLOAT_TO_Q4_0 {
   public:
    __aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {}
    __aicore__ inline void init(GM_ADDR input, GM_ADDR output,
                                int64_t *input_ne_ub, size_t *input_nb_ub,
                                int64_t *output_ne_ub) {
        // TODO: fix test_case CPY(type_src=f16,type_dst=q4_0,ne=[256,4,4,4],
        //                         permute=[0,0,0,0]):
        // [CPY] NMSE = 0.000008343 > 0.000001000 FAIL
        int64_t op_block_num = GetBlockNum();
        int64_t op_block_idx = GetBlockIdx();

        // input stride of data elements
        for (int i = 0; i < 4; i++) {
            input_ne[i] = input_ne_ub[i];
            input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
            output_ne[i] = output_ne_ub[i];
        }

        // output stride of data elements
        output_stride[0] = 1;
        for (int i = 1; i < 4; i++) {
            output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
        }

        // scale saved one by one after data:. [group1_scale, group2_scale, ...]
        scale_ne = input_ne;
        scale_stride[0] = 1;
        scale_stride[1] = input_ne[0] / Group_Size;
        for (int i = 2; i < 4; i++) {
            scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
        }

        // split input tensor by rows.
        uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
        dr = nr / op_block_num;

        uint64_t tails = nr % op_block_num;
        if (op_block_idx < tails) {
            dr += 1;
            ir = dr * op_block_idx;
        } else {
            ir = dr * op_block_idx + tails;
        }

        group_size_in_row = scale_stride[1];
        int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] *
                              output_ne[3] * sizeof(uint8_t) / 2;

        input_gm.SetGlobalBuffer((__gm__ SRC_T *)input);
        output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
        scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir *
                                                 group_size_in_row *
                                                 sizeof(half)));

        pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T));
        pipe.InitBuffer(output_queue, BUFFER_NUM,
                            Group_Size * sizeof(int8_t) / 2);
        pipe.InitBuffer(cast_queue , 1, Group_Size * sizeof(float));
        pipe.InitBuffer(work_queue, 1, Group_Size * sizeof(float));
        pipe.InitBuffer(max_queue, 1, Group_Size * sizeof(float));
        pipe.InitBuffer(min_queue, 1, Group_Size * sizeof(float));
        pipe.InitBuffer(scale_queue, 1, Group_Size / 2 * sizeof(half));
        pipe.InitBuffer(int8_queue, 1, Group_Size * sizeof(int8_t));
        pipe.InitBuffer(half_queue, 1, Group_Size * sizeof(half));
    }

    __aicore__ inline void copy_in(uint32_t offset) {
        LocalTensor<SRC_T> input_local = input_queue.AllocTensor<SRC_T>();
        DataCopy(input_local, input_gm[offset], Group_Size);
        input_queue.EnQue(input_local);
    }

    __aicore__ inline void copy_out(uint32_t offset) {
        // reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t,
        // and using DataCopyPad to avoid 32 bits align.
        LocalTensor<int4b_t> output_local = output_queue.DeQue<int4b_t>();
        LocalTensor<int8_t> output_int8_local =
                                    output_local.ReinterpretCast<int8_t>();

        DataCopyExtParams dataCopyParams;
        dataCopyParams.blockCount = 1;
        dataCopyParams.blockLen = Group_Size / 2  * sizeof(int8_t);
        DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams);

        output_queue.FreeTensor(output_local);
    }

    __aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
                                         LocalTensor<float> input_local) {
        DataCopy(cast_local, input_local, Group_Size);
    }

    __aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
                                         LocalTensor<half> input_local) {
        Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size);
    }

    __aicore__ inline half calculate_group(int64_t row, int64_t group) {
        const int64_t i3 = row / (input_ne[1] * input_ne[2]);
        const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
        const int64_t i1 =
            row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];

        const int64_t input_offset = i1 * input_stride[1] +
                                     i2 * input_stride[2] +
                                     i3 * input_stride[3] + Group_Size * group;

        // output_offset is stride for output_gm which datatype is int8_t and
        // divided by 2 is needed for int4b_t.
        const int64_t output_offset = (i1 * output_stride[1] +
                                       i2 * output_stride[2] +
                                       i3 * output_stride[3] +
                                       Group_Size * group) / 2;
        copy_in(input_offset);

        LocalTensor<SRC_T> input_local = input_queue.DeQue<SRC_T>();
        LocalTensor<int4b_t> output_local = output_queue.AllocTensor<int4b_t>();
        LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
        LocalTensor<float> work_local = work_queue.AllocTensor<float>();
        LocalTensor<float> max_local = max_queue.AllocTensor<float>();
        LocalTensor<float> min_local = min_queue.AllocTensor<float>();
        LocalTensor<int8_t> int8_local = int8_queue.AllocTensor<int8_t>();
        LocalTensor<half> half_local = half_queue.AllocTensor<half>();

        input_to_cast(cast_local, input_local);

        ReduceMax(max_local, cast_local, work_local, Group_Size);
        ReduceMin(min_local, cast_local, work_local, Group_Size);
        const float max_value = max_local.GetValue(0);
        const float min_value = min_local.GetValue(0);
        float d = max_value;
        if (min_value < 0 && (-1 * min_value) > max_value) {
            d = min_value;
        }

        d = d / (-8);
        if (d != 0) {
            Muls(cast_local, cast_local, 1.0f / d, Group_Size);
        }

        // range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7]
        float scalar = 8.5f;
        Adds(cast_local, cast_local, scalar, Group_Size);
        Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size);
        scalar = 15.0f;
        Mins(cast_local, cast_local, scalar, Group_Size);
        scalar = -8.0f;
        Adds(cast_local, cast_local, scalar, Group_Size);

        // float->half->int4b
        Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size);
        Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size);

        output_queue.EnQue(output_local);
        copy_out(output_offset);

        input_queue.FreeTensor(input_local);
        work_queue.FreeTensor(work_local);
        max_queue.FreeTensor(max_local);
        min_queue.FreeTensor(min_local);
        int8_queue.FreeTensor(int8_local);
        half_queue.FreeTensor(half_local);
        cast_queue.FreeTensor(cast_local);
        return (half)d;
    }

    __aicore__ inline void calculate() {
        LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
        uint32_t scale_local_offset = 0;
        uint32_t scale_global_offset = 0;
        for (int64_t i = ir; i < ir + dr; i++) {
            for (int64_t j = 0; j < group_size_in_row; j++) {
                half scale = calculate_group(i, j);
                scale_local.SetValue(scale_local_offset++, scale);
                // Copy Group_Size/2 length data each time.
                if (scale_local_offset == Group_Size / 2) {
                    scale_local_offset = 0;
                    // TODO: OPTIMIZE ME
                    pipe_barrier(PIPE_ALL);
                    DataCopy(scale_gm[scale_global_offset], scale_local,
                                      Group_Size / 2);
                    pipe_barrier(PIPE_ALL);
                    scale_global_offset += Group_Size / 2;
                }
            }
        }

        if (scale_local_offset != 0) {
            pipe_barrier(PIPE_ALL);
            DataCopyExtParams dataCopyParams;
            dataCopyParams.blockCount = 1;
            dataCopyParams.blockLen = scale_local_offset * sizeof(half);
            DataCopyPad(scale_gm[scale_global_offset], scale_local,
                        dataCopyParams);
            pipe_barrier(PIPE_ALL);
        }
        scale_queue.FreeTensor(scale_local);
    }

   private:
    int64_t input_ne[4];
    size_t input_stride[4];

    int64_t *scale_ne;
    size_t scale_stride[4];

    int64_t output_ne[4];
    size_t output_stride[4];

    int64_t group_size_in_row;

    int64_t ir;
    int64_t dr;

    TPipe pipe;
    GlobalTensor<SRC_T> input_gm;
    GlobalTensor<half> scale_gm;
    GlobalTensor<int8_t> output_gm;
    TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
    TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
    TQue<QuePosition::VECIN, BUFFER_NUM> work_queue;
    TQue<QuePosition::VECOUT, BUFFER_NUM> max_queue;
    TQue<QuePosition::VECOUT, BUFFER_NUM> min_queue;
    TQue<QuePosition::VECOUT, BUFFER_NUM> scale_queue;
    TQue<QuePosition::VECOUT, BUFFER_NUM> cast_queue;
    TQue<QuePosition::VECOUT, BUFFER_NUM> int8_queue;
    TQue<QuePosition::VECOUT, BUFFER_NUM> half_queue;
};

template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
    auto gm_ptr = (__gm__ uint8_t *)gm;
    auto ub_ptr = (uint8_t *)(ub);
    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
        *ub_ptr = *gm_ptr;
    }
}

extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
    GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
    GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
    int64_t input_ne_ub[4];
    size_t input_nb_ub[4];
    int64_t output_ne_ub[4];

    copy_to_ub(input_ne_gm, input_ne_ub, 32);
    copy_to_ub(input_nb_gm, input_nb_ub, 32);
    copy_to_ub(output_ne_gm, output_ne_ub, 32);

    QUANTIZE_FLOAT_TO_Q4_0<half> op;
    op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
    op.calculate();
}

extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
    GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
    GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
    int64_t input_ne_ub[4];
    size_t input_nb_ub[4];
    int64_t output_ne_ub[4];

    copy_to_ub(input_ne_gm, input_ne_ub, 32);
    copy_to_ub(input_nb_gm, input_nb_ub, 32);
    copy_to_ub(output_ne_gm, output_ne_ub, 32);

    QUANTIZE_FLOAT_TO_Q4_0<float> op;
    op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
    op.calculate();
}