#include "kernel_operator.h" using namespace AscendC; #define BUFFER_NUM 2 #define Group_Size 32 template class QUANTIZE_FLOAT_TO_Q4_0 { public: __aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {} __aicore__ inline void init(GM_ADDR input, GM_ADDR output, int64_t *input_ne_ub, size_t *input_nb_ub, int64_t *output_ne_ub) { // TODO: fix test_case CPY(type_src=f16,type_dst=q4_0,ne=[256,4,4,4], // permute=[0,0,0,0]): // [CPY] NMSE = 0.000008343 > 0.000001000 FAIL int64_t op_block_num = GetBlockNum(); int64_t op_block_idx = GetBlockIdx(); // input stride of data elements for (int i = 0; i < 4; i++) { input_ne[i] = input_ne_ub[i]; input_stride[i] = input_nb_ub[i] / input_nb_ub[0]; output_ne[i] = output_ne_ub[i]; } // output stride of data elements output_stride[0] = 1; for (int i = 1; i < 4; i++) { output_stride[i] = output_stride[i - 1] * output_ne[i - 1]; } // scale saved one by one after data:. [group1_scale, group2_scale, ...] scale_ne = input_ne; scale_stride[0] = 1; scale_stride[1] = input_ne[0] / Group_Size; for (int i = 2; i < 4; i++) { scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1]; } // split input tensor by rows. uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3]; dr = nr / op_block_num; uint64_t tails = nr % op_block_num; if (op_block_idx < tails) { dr += 1; ir = dr * op_block_idx; } else { ir = dr * op_block_idx + tails; } group_size_in_row = scale_stride[1]; int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] * output_ne[3] * sizeof(uint8_t) / 2; input_gm.SetGlobalBuffer((__gm__ SRC_T *)input); output_gm.SetGlobalBuffer((__gm__ int8_t *)output); scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir * group_size_in_row * sizeof(half))); pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T)); pipe.InitBuffer(output_queue, BUFFER_NUM, Group_Size * sizeof(int8_t) / 2); pipe.InitBuffer(cast_queue , 1, Group_Size * sizeof(float)); pipe.InitBuffer(work_queue, 1, Group_Size * sizeof(float)); pipe.InitBuffer(max_queue, 1, Group_Size * sizeof(float)); pipe.InitBuffer(min_queue, 1, Group_Size * sizeof(float)); pipe.InitBuffer(scale_queue, 1, Group_Size / 2 * sizeof(half)); pipe.InitBuffer(int8_queue, 1, Group_Size * sizeof(int8_t)); pipe.InitBuffer(half_queue, 1, Group_Size * sizeof(half)); } __aicore__ inline void copy_in(uint32_t offset) { LocalTensor input_local = input_queue.AllocTensor(); DataCopy(input_local, input_gm[offset], Group_Size); input_queue.EnQue(input_local); } __aicore__ inline void copy_out(uint32_t offset) { // reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t, // and using DataCopyPad to avoid 32 bits align. LocalTensor output_local = output_queue.DeQue(); LocalTensor output_int8_local = output_local.ReinterpretCast(); DataCopyExtParams dataCopyParams; dataCopyParams.blockCount = 1; dataCopyParams.blockLen = Group_Size / 2 * sizeof(int8_t); DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams); output_queue.FreeTensor(output_local); } __aicore__ inline void input_to_cast(LocalTensor cast_local, LocalTensor input_local) { DataCopy(cast_local, input_local, Group_Size); } __aicore__ inline void input_to_cast(LocalTensor cast_local, LocalTensor input_local) { Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size); } __aicore__ inline half calculate_group(int64_t row, int64_t group) { const int64_t i3 = row / (input_ne[1] * input_ne[2]); const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1]; const int64_t i1 = row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1]; const int64_t input_offset = i1 * input_stride[1] + i2 * input_stride[2] + i3 * input_stride[3] + Group_Size * group; // output_offset is stride for output_gm which datatype is int8_t and // divided by 2 is needed for int4b_t. const int64_t output_offset = (i1 * output_stride[1] + i2 * output_stride[2] + i3 * output_stride[3] + Group_Size * group) / 2; copy_in(input_offset); LocalTensor input_local = input_queue.DeQue(); LocalTensor output_local = output_queue.AllocTensor(); LocalTensor cast_local = cast_queue.AllocTensor(); LocalTensor work_local = work_queue.AllocTensor(); LocalTensor max_local = max_queue.AllocTensor(); LocalTensor min_local = min_queue.AllocTensor(); LocalTensor int8_local = int8_queue.AllocTensor(); LocalTensor half_local = half_queue.AllocTensor(); input_to_cast(cast_local, input_local); ReduceMax(max_local, cast_local, work_local, Group_Size); ReduceMin(min_local, cast_local, work_local, Group_Size); const float max_value = max_local.GetValue(0); const float min_value = min_local.GetValue(0); float d = max_value; if (min_value < 0 && (-1 * min_value) > max_value) { d = min_value; } d = d / (-8); if (d != 0) { Muls(cast_local, cast_local, 1.0f / d, Group_Size); } // range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7] float scalar = 8.5f; Adds(cast_local, cast_local, scalar, Group_Size); Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size); scalar = 15.0f; Mins(cast_local, cast_local, scalar, Group_Size); scalar = -8.0f; Adds(cast_local, cast_local, scalar, Group_Size); // float->half->int4b Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size); Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size); output_queue.EnQue(output_local); copy_out(output_offset); input_queue.FreeTensor(input_local); work_queue.FreeTensor(work_local); max_queue.FreeTensor(max_local); min_queue.FreeTensor(min_local); int8_queue.FreeTensor(int8_local); half_queue.FreeTensor(half_local); cast_queue.FreeTensor(cast_local); return (half)d; } __aicore__ inline void calculate() { LocalTensor scale_local = scale_queue.AllocTensor(); uint32_t scale_local_offset = 0; uint32_t scale_global_offset = 0; for (int64_t i = ir; i < ir + dr; i++) { for (int64_t j = 0; j < group_size_in_row; j++) { half scale = calculate_group(i, j); scale_local.SetValue(scale_local_offset++, scale); // Copy Group_Size/2 length data each time. if (scale_local_offset == Group_Size / 2) { scale_local_offset = 0; // TODO: OPTIMIZE ME pipe_barrier(PIPE_ALL); DataCopy(scale_gm[scale_global_offset], scale_local, Group_Size / 2); pipe_barrier(PIPE_ALL); scale_global_offset += Group_Size / 2; } } } if (scale_local_offset != 0) { pipe_barrier(PIPE_ALL); DataCopyExtParams dataCopyParams; dataCopyParams.blockCount = 1; dataCopyParams.blockLen = scale_local_offset * sizeof(half); DataCopyPad(scale_gm[scale_global_offset], scale_local, dataCopyParams); pipe_barrier(PIPE_ALL); } scale_queue.FreeTensor(scale_local); } private: int64_t input_ne[4]; size_t input_stride[4]; int64_t *scale_ne; size_t scale_stride[4]; int64_t output_ne[4]; size_t output_stride[4]; int64_t group_size_in_row; int64_t ir; int64_t dr; TPipe pipe; GlobalTensor input_gm; GlobalTensor scale_gm; GlobalTensor output_gm; TQue input_queue; TQue output_queue; TQue work_queue; TQue max_queue; TQue min_queue; TQue scale_queue; TQue cast_queue; TQue int8_queue; TQue half_queue; }; template __aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) { auto gm_ptr = (__gm__ uint8_t *)gm; auto ub_ptr = (uint8_t *)(ub); for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) { *ub_ptr = *gm_ptr; } } extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0( GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) { int64_t input_ne_ub[4]; size_t input_nb_ub[4]; int64_t output_ne_ub[4]; copy_to_ub(input_ne_gm, input_ne_ub, 32); copy_to_ub(input_nb_gm, input_nb_ub, 32); copy_to_ub(output_ne_gm, output_ne_ub, 32); QUANTIZE_FLOAT_TO_Q4_0 op; op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub); op.calculate(); } extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0( GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) { int64_t input_ne_ub[4]; size_t input_nb_ub[4]; int64_t output_ne_ub[4]; copy_to_ub(input_ne_gm, input_ne_ub, 32); copy_to_ub(input_nb_gm, input_nb_ub, 32); copy_to_ub(output_ne_gm, output_ne_ub, 32); QUANTIZE_FLOAT_TO_Q4_0 op; op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub); op.calculate(); }