File size: 1,096 Bytes
ae0af75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch.nn as nn


class Block(nn.Module):
    def __init__(self, in_channels, out_channels, down=True, act="relu", use_dropout=False):
        super().__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 4, 2, 1, bias=False, padding_mode="reflect")
            if down
            else nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU() if act == "relu" else nn.LeakyReLU(0.2),
        )

        self.use_dropout = use_dropout
        self.dropout = nn.Dropout(0.5)
        self.down = down

    def forward(self, x):
        x = self.conv(x)
        return self.dropout(x)
    
class BlockCNN(nn.Module):
    def __init__(self, in_channels, out_channels, stride=2):
        super().__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 4, stride, bias=False, padding_mode="reflect"),
            nn.BatchNorm2d(out_channels),
            nn.LeakyReLU(0.2),
        )

    def forward(self, x):
        return self.conv(x)