import torch import torch.nn as nn from models.base import Block class Generator(nn.Module): def __init__(self, in_channels=3, features=64): super().__init__() self.initial_down = nn.Sequential( nn.Conv2d(in_channels, features, 4, 2, 1, padding_mode="reflect"), nn.LeakyReLU(0.2), ) self.down1 = Block(features, features * 2, down=True, act="leaky", use_dropout=False) self.down2 = Block(features * 2, features * 4, down=True, act="leaky", use_dropout=False) self.down3 = Block(features * 4, features * 8, down=True, act="leaky", use_dropout=False) self.down4 = Block(features * 8, features * 8, down=True, act="leaky", use_dropout=False) self.down5 = Block(features * 8, features * 8, down=True, act="leaky", use_dropout=False) self.down6 = Block(features * 8, features * 8, down=True, act="leaky", use_dropout=False) self.bottleneck = nn.Sequential( nn.Conv2d(features * 8, features * 8, 4, 2, 1), nn.ReLU() ) self.up1 = Block(features * 8, features * 8, down=False, act="relu", use_dropout=True) self.up2 = Block(features * 8 * 2, features * 8, down=False, act="relu", use_dropout=True) self.up3 = Block(features * 8 * 2, features * 8, down=False, act="relu", use_dropout=True) self.up4 = Block(features * 8 * 2, features * 8, down=False, act="relu", use_dropout=False) self.up5 = Block(features * 8 * 2, features * 4, down=False, act="relu", use_dropout=False) self.up6 = Block(features * 4 * 2, features * 2, down=False, act="relu", use_dropout=False) self.up7 = Block(features * 2 * 2, features, down=False, act="relu", use_dropout=False) self.final_up = nn.Sequential( nn.ConvTranspose2d(features * 2, in_channels, kernel_size=4, stride=2, padding=1), nn.Tanh(), ) def forward(self, x): d1 = self.initial_down(x) d2 = self.down1(d1) d3 = self.down2(d2) d4 = self.down3(d3) d5 = self.down4(d4) d6 = self.down5(d5) d7 = self.down6(d6) bottleneck = self.bottleneck(d7) up1 = self.up1(bottleneck) up2 = self.up2(torch.cat([up1, d7], 1)) up3 = self.up3(torch.cat([up2, d6], 1)) up4 = self.up4(torch.cat([up3, d5], 1)) up5 = self.up5(torch.cat([up4, d4], 1)) up6 = self.up6(torch.cat([up5, d3], 1)) up7 = self.up7(torch.cat([up6, d2], 1)) final_up = self.final_up(torch.cat([up7, d1], 1)) return final_up def test(): # Test Case for Generator Model x = torch.randn((1, 3, 256, 256)) gen = Generator() print(f"Generator Output Shape: {gen(x).shape}")