57894 / app.py
Muhammad Naufal Rizqullah
first commit
21a662b
import torch
from PIL import Image
import numpy as np
import gradio as gr
from config.core import config
from utility.helper import load_model_weights, init_generator_model, get_selected_value
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = init_generator_model()
model = load_model_weights(config.CKPT_PATH, model, DEVICE, "generator")
model.eval()
def inference(choice):
z = torch.randn(1, config.INPUT_Z_DIM, 1, 1).to(DEVICE)
label = torch.tensor([get_selected_value(choice)], device=DEVICE)
image_tensor = model(z, label)
image_tensor = (image_tensor + 1) / 2 # Shift and scale to 0 to 1
image_unflat = image_tensor.detach().cpu().squeeze(0) # Remove batch dimension
image = image_unflat.permute(1, 2, 0) # Permute to (H, W, C)
# Convert image to numpy array
image_array = image.numpy()
# Scale values to 0-255 range
image_array = (image_array * 255).astype(np.uint8)
# Convert numpy array to PIL Image
image = Image.fromarray(image_array)
return image
demo = gr.Interface(
fn=inference,
inputs=gr.Dropdown(choices=list(config.OPTIONS_MAPPING.keys()), label="Select an option to Generates Images"),
outputs=gr.Image(),
title="Shoe, Sandal, Boot - Conditional GAN",
description="Conditional WGAN-GP",
)
demo.launch()