Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,359 Bytes
bc59ff5 5d5194a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
import gradio as gr
import spaces
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from Amodal3R.pipelines import Amodal3RImageTo3DPipeline
from Amodal3R.representations import Gaussian, MeshExtractResult
from Amodal3R.utils import render_utils, postprocessing_utils
from segment_anything import sam_model_registry, SamPredictor
from huggingface_hub import hf_hub_download
import cv2
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def change_message():
return "Please wait for a few seconds after uploading the image."
def reset_image(predictor, img):
img = np.array(img)
predictor.set_image(img)
original_img = img.copy()
return predictor, original_img, "The models are ready.", [], [], [], original_img
def button_clickable(selected_points):
if len(selected_points) > 0:
return gr.Button.update(interactive=True)
else:
return gr.Button.update(interactive=False)
def run_sam(img, predictor, selected_points):
if len(selected_points) == 0:
return np.zeros(img.shape[:2], dtype=np.uint8)
input_points = [p for p in selected_points]
input_labels = [1 for _ in range(len(selected_points))]
masks, _, _ = predictor.predict(
point_coords=np.array(input_points),
point_labels=np.array(input_labels),
multimask_output=False,
)
best_mask = masks[0].astype(np.uint8)
# dilate
if len(selected_points) > 1:
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
best_mask = cv2.dilate(best_mask, kernel, iterations=1)
best_mask = cv2.erode(best_mask, kernel, iterations=1)
return best_mask
@spaces.GPU
def image_to_3d(
image: np.ndarray,
mask: np.ndarray,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
erode_kernel_size: int,
req: gr.Request,
) -> Tuple[dict, str]:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
outputs = pipeline.run_multi_image(
[image],
[mask],
seed=seed,
formats=["gaussian", "mesh"],
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
mode="stochastic",
erode_kernel_size=erode_kernel_size,
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120, bg_color=(1,1,1))['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> tuple:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> tuple:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> tuple:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_sam_predictor():
sam_checkpoint = hf_hub_download("ybelkada/segment-anything", "checkpoints/sam_vit_h_4b8939.pth")
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam_predictor = SamPredictor(sam)
return sam_predictor
def draw_points_on_image(image, point):
image_with_points = image.copy()
x, y = point
color = (255, 0, 0)
cv2.circle(image_with_points, (int(x), int(y)), radius=10, color=color, thickness=-1)
return image_with_points
def see_point(image, x, y):
updated_image = draw_points_on_image(image, [x,y])
return updated_image
def add_point(x, y, visible_points):
if [x, y] not in visible_points:
visible_points.append([x, y])
return visible_points
def delete_point(visible_points):
visible_points.pop()
return visible_points
def clear_all_points(image):
updated_image = image.copy()
return updated_image
def see_visible_points(image, visible_points):
updated_image = image.copy()
for p in visible_points:
cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(255, 0, 0), thickness=-1)
return updated_image
def see_occlusion_points(image, occlusion_points):
updated_image = image.copy()
for p in occlusion_points:
cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(0, 255, 0), thickness=-1)
return updated_image
def update_all_points(points):
text = f"Points: {points}"
dropdown_choices = [f"({p[0]}, {p[1]})" for p in points]
return text, gr.Dropdown(show_label=False, choices=dropdown_choices, value=None, interactive=True)
def delete_selected(image, visible_points, occlusion_points, occlusion_mask_list, selected_value, point_type):
if point_type == "visibility":
try:
selected_index = [f"({p[0]}, {p[1]})" for p in visible_points].index(selected_value)
except ValueError:
selected_index = None
if selected_index is not None and 0 <= selected_index < len(visible_points):
visible_points.pop(selected_index)
else:
try:
selected_index = [f"({p[0]}, {p[1]})" for p in occlusion_points].index(selected_value)
except ValueError:
selected_index = None
if selected_index is not None and 0 <= selected_index < len(occlusion_points):
occlusion_points.pop(selected_index)
occlusion_mask_list.pop(selected_index)
updated_image = image.copy()
updated_image = see_visible_points(updated_image, visible_points)
updated_image = see_occlusion_points(updated_image, occlusion_points)
if point_type == "visibility":
updated_text, dropdown = update_all_points(visible_points)
else:
updated_text, dropdown = update_all_points(occlusion_points)
return updated_image, visible_points, occlusion_points, updated_text, dropdown
def add_current_mask(visibility_mask, visibilty_mask_list, point_type):
if point_type == "visibility":
if len(visibilty_mask_list) > 0:
if np.array_equal(visibility_mask, visibilty_mask_list[-1]):
return visibilty_mask_list
visibilty_mask_list.append(visibility_mask)
return visibilty_mask_list
else: # the occlusion mask will be automatically added, so do nothing here
return visibilty_mask_list
def apply_mask_overlay(image, mask, color=(255, 0, 0)):
img_arr = image
overlay = img_arr.copy()
gray_color = np.array([200, 200, 200], dtype=np.uint8)
non_mask = mask == 0
overlay[non_mask] = (0.5 * overlay[non_mask] + 0.5 * gray_color).astype(np.uint8)
contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(overlay, contours, -1, color, 2)
return overlay
def vis_mask(image, mask_list):
updated_image = image.copy()
combined_mask = np.zeros_like(updated_image[:, :, 0])
for mask in mask_list:
combined_mask = cv2.bitwise_or(combined_mask, mask)
updated_image = apply_mask_overlay(updated_image, combined_mask)
return updated_image
def segment_and_overlay(image, points, sam_predictor, mask_list, point_type):
if point_type == "visibility":
visible_mask = run_sam(image, sam_predictor, points)
for mask in mask_list:
visible_mask = cv2.bitwise_or(visible_mask, mask)
overlaid = apply_mask_overlay(image, visible_mask * 255)
return overlaid, visible_mask, mask_list
else:
combined_occlusion_mask = np.zeros_like(image[:, :, 0])
mask_list = []
if len(points) != 0:
for point in points:
mask = run_sam(image, sam_predictor, [point])
mask_list.append(mask)
combined_occlusion_mask = cv2.bitwise_or(combined_occlusion_mask, mask)
overlaid = apply_mask_overlay(image, combined_occlusion_mask * 255, color=(0, 255, 0))
return overlaid, combined_occlusion_mask, mask_list
def delete_mask(visibility_mask_list, occlusion_mask_list, occlusion_points_state, point_type):
if point_type == "visibility":
if len(visibility_mask_list) > 0:
visibility_mask_list.pop()
else:
if len(occlusion_mask_list) > 0:
occlusion_mask_list.pop()
occlusion_points_state.pop()
return visibility_mask_list, occlusion_mask_list, occlusion_points_state
def check_combined_mask(image, visibility_mask, visibility_mask_list, occlusion_mask_list, scale=0.68):
if visibility_mask.sum() == 0:
return np.zeros_like(image), np.zeros_like(image[:, :, 0])
updated_image = image.copy()
combined_mask = np.zeros_like(updated_image[:, :, 0])
occluded_mask = np.zeros_like(updated_image[:, :, 0])
binary_visibility_masks = [(m > 0).astype(np.uint8) for m in visibility_mask_list]
combined_mask = np.zeros_like(binary_visibility_masks[0]) if binary_visibility_masks else (visibility_mask > 0).astype(np.uint8)
for m in binary_visibility_masks:
combined_mask = cv2.bitwise_or(combined_mask, m)
if len(binary_visibility_masks) > 1:
kernel = np.ones((5, 5), np.uint8)
combined_mask = cv2.dilate(combined_mask, kernel, iterations=1)
binary_occlusion_masks = [(m > 0).astype(np.uint8) for m in occlusion_mask_list]
occluded_mask = np.zeros_like(binary_occlusion_masks[0]) if binary_occlusion_masks else np.zeros_like(combined_mask)
for m in binary_occlusion_masks:
occluded_mask = cv2.bitwise_or(occluded_mask, m)
kernel_small = np.ones((3, 3), np.uint8)
if len(binary_occlusion_masks) > 0:
dilated = cv2.dilate(combined_mask, kernel_small, iterations=1)
boundary_mask = dilated - combined_mask
occluded_mask = cv2.bitwise_or(occluded_mask, boundary_mask)
occluded_mask = (occluded_mask > 0).astype(np.uint8)
occluded_mask = cv2.dilate(occluded_mask, kernel_small, iterations=1)
occluded_mask = (occluded_mask > 0).astype(np.uint8)
else:
occluded_mask = 1 - combined_mask
combined_mask[occluded_mask == 1] = 0
occluded_mask = (1-occluded_mask) * 255
masked_img = updated_image * combined_mask[:, :, None]
occluded_mask[combined_mask == 1] = 127
x, y, w, h = cv2.boundingRect(combined_mask.astype(np.uint8))
ori_h, ori_w = masked_img.shape[:2]
target_size = 512
scale_factor = target_size / max(w, h)
final_scale = scale_factor * scale
new_w = int(round(ori_w * final_scale))
new_h = int(round(ori_h * final_scale))
resized_occluded_mask = cv2.resize(occluded_mask.astype(np.uint8), (new_w, new_h), interpolation=cv2.INTER_NEAREST)
resized_img = cv2.resize(masked_img, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
final_img = np.zeros((target_size, target_size, 3), dtype=updated_image.dtype)
final_occluded_mask = np.ones((target_size, target_size), dtype=np.uint8) * 255
new_x = int(round(x * final_scale))
new_y = int(round(y * final_scale))
new_w_box = int(round(w * final_scale))
new_h_box = int(round(h * final_scale))
new_cx = new_x + new_w_box // 2
new_cy = new_y + new_h_box // 2
final_cx, final_cy = target_size // 2, target_size // 2
x_offset = final_cx - new_cx
y_offset = final_cy - new_cy
final_x_start = max(0, x_offset)
final_y_start = max(0, y_offset)
final_x_end = min(target_size, x_offset + new_w)
final_y_end = min(target_size, y_offset + new_h)
img_x_start = max(0, -x_offset)
img_y_start = max(0, -y_offset)
img_x_end = min(new_w, target_size - x_offset)
img_y_end = min(new_h, target_size - y_offset)
final_img[final_y_start:final_y_end, final_x_start:final_x_end] = resized_img[img_y_start:img_y_end, img_x_start:img_x_end]
final_occluded_mask[final_y_start:final_y_end, final_x_start:final_x_end] = resized_occluded_mask[img_y_start:img_y_end, img_x_start:img_x_end]
return final_img, final_occluded_mask
def get_point(img, point_type, visible_points_state, occlusion_points_state, evt: gr.SelectData):
updated_img = np.array(img).copy()
if point_type == "visibility":
visible_points_state = add_point(evt.index[0], evt.index[1], visible_points_state)
else:
occlusion_points_state = add_point(evt.index[0], evt.index[1], occlusion_points_state)
updated_img = see_visible_points(updated_img, visible_points_state)
updated_img = see_occlusion_points(updated_img, occlusion_points_state)
return updated_img, visible_points_state, occlusion_points_state
def change_point_type(point_type, visible_points_state, occlusion_points_state):
if point_type == "visibility":
text = f"Points: {visible_points_state}"
dropdown_choices = [f"({p[0]}, {p[1]})" for p in visible_points_state]
else:
text = f"Points: {occlusion_points_state}"
dropdown_choices = [f"({p[0]}, {p[1]})" for p in occlusion_points_state]
return text, gr.Dropdown(show_label=False, choices=dropdown_choices, value=None, interactive=True)
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/)
""")
predictor = gr.State(value=get_sam_predictor())
visible_points_state = gr.State(value=[])
occlusion_points_state = gr.State(value=[])
occlusion_mask = gr.State(value=None)
occlusion_mask_list = gr.State(value=[])
original_image = gr.State(value=None)
visibility_mask = gr.State(value=None)
visibility_mask_list = gr.State(value=[])
occluded_mask = gr.State(value=None)
output_buf = gr.State()
with gr.Row():
with gr.Column():
gr.Markdown("""
### Step 1 - Generate Visibility and Occlusion Mask.
* Please click "Load Example Image" when using the provided example images (bottom).
* Please wait for a few seconds after uploading the image. Segment Anything is getting ready.
* **Click to add the point prompts** to indicate the target object (multiple points supported) and occluders (one point for an occluder for better usability).
* "Add mask", current mask will be saved if the input needs to be added sequentially.
* The scale of target object can be adjusted for better reconstruction, we suggest 0.4 to 0.7 for most cases.
""")
with gr.Row():
input_image = gr.Image(interactive=True, type='pil', label='Input Occlusion Image', show_label=True, sources="upload", height=300)
input_with_prompt = gr.Image(type="numpy", label='Input with Prompt', interactive=False, height=300)
with gr.Row():
apply_example_btn = gr.Button("Load Example Image")
message = gr.Markdown("Please wait a few seconds after uploading the image.", label="Message")
with gr.Row():
point_type = gr.Radio(["visibility", "occlusion"], label="Point Prompt Type", value="visibility")
with gr.Row():
with gr.Column():
points_text = gr.Textbox(show_label=False, interactive=False)
with gr.Column():
points_dropdown = gr.Dropdown(show_label=False, choices=[], value=None, interactive=True)
delete_button = gr.Button("Delete Selected Point")
with gr.Row():
with gr.Column():
render_mask = gr.Image(label='Render Mask', interactive=False, height=300)
with gr.Row():
add_mask = gr.Button("Add Mask")
undo_mask = gr.Button("Undo Last Mask")
with gr.Column():
vis_input = gr.Image(label='Visible Input', interactive=False, height=300)
with gr.Row():
zoom_scale = gr.Slider(0.3, 1.0, label="Target Object Scale", value=0.68, step=0.1)
with gr.Row():
check_visible_input = gr.Button("Generate Occluded Input")
with gr.Column():
gr.Markdown("""
### Step 2 - 3D Amodal Reconstruction. (Thanks to [TRELLIS](https://huggingface.co/spaces/JeffreyXiang/TRELLIS) for the 3D rendering component!)
* Different random seeds can be tried in "Generation Settings", if you think the results are not ideal.
* The boundary of the segmentation may not be accurate, so here we provide the option to erode the visible area (try 0, 3 or 5).
* If the reconstructed 3D asset is satisfactory, interactive GLB file can be extracted (may look dull due to the absence of light source) and downloaded.
""")
with gr.Row():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
with gr.Row():
with gr.Accordion(label="Generation Settings", open=False):
with gr.Row():
with gr.Column():
seed = gr.Slider(0, MAX_SEED, label="Seed", value=1, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
with gr.Column():
erode_kernel_size = gr.Slider(0, 5, label="Erode Kernel Size", value=3, step=1)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
with gr.Row():
generate_btn = gr.Button("Amodal 3D Reconstruction")
with gr.Row():
model_output = gr.Model3D(label="Extracted GLB", pan_speed=0.5, height=300, clear_color=(0.9,0.9,0.9,1))
with gr.Row():
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB")
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[input_image],
fn=lambda x: x,
outputs=[input_image],
run_on_click=True,
examples_per_page=12,
)
# # Handlers
demo.load(start_session)
demo.unload(end_session)
input_image.upload(
change_message,
[],
[message]
).then(
reset_image,
[predictor, input_image],
[predictor, original_image, message, visible_points_state, occlusion_points_state, occlusion_mask_list, input_with_prompt],
)
apply_example_btn.click(
change_message,
[],
[message]
).then(
reset_image,
inputs=[predictor, input_image],
outputs=[predictor, original_image, message, visible_points_state, occlusion_points_state, occlusion_mask_list, input_with_prompt]
)
input_image.select(
get_point,
inputs=[input_image, point_type, visible_points_state, occlusion_points_state],
outputs=[input_with_prompt, visible_points_state, occlusion_points_state]
)
point_type.change(
change_point_type,
inputs=[point_type, visible_points_state, occlusion_points_state],
outputs=[points_text, points_dropdown]
)
visible_points_state.change(
update_all_points,
inputs=[visible_points_state],
outputs=[points_text, points_dropdown]
).then(
segment_and_overlay,
inputs=[original_image, visible_points_state, predictor, visibility_mask_list, point_type],
outputs=[render_mask, visibility_mask, visibility_mask_list]
).then(
check_combined_mask,
inputs=[original_image, visibility_mask, visibility_mask_list, occlusion_mask_list, zoom_scale],
outputs=[vis_input, occluded_mask]
)
occlusion_points_state.change(
update_all_points,
inputs=[occlusion_points_state],
outputs=[points_text, points_dropdown]
).then(
segment_and_overlay,
inputs=[original_image, occlusion_points_state, predictor, occlusion_mask_list, point_type],
outputs=[render_mask, occlusion_mask, occlusion_mask_list]
).then(
check_combined_mask,
inputs=[original_image, visibility_mask, visibility_mask_list, occlusion_mask_list, zoom_scale],
outputs=[vis_input, occluded_mask]
)
delete_button.click(
delete_selected,
inputs=[original_image, visible_points_state, occlusion_points_state, occlusion_mask_list, points_dropdown, point_type],
outputs=[input_with_prompt, visible_points_state, occlusion_points_state, points_text, points_dropdown]
)
add_mask.click(
add_current_mask,
inputs=[visibility_mask, visibility_mask_list, point_type],
outputs=[visibility_mask_list]
)
undo_mask.click(
delete_mask,
inputs=[visibility_mask_list, occlusion_mask_list, occlusion_points_state, point_type],
outputs=[visibility_mask_list, occlusion_mask_list, occlusion_points_state]
)
check_visible_input.click(
check_combined_mask,
inputs=[original_image, visibility_mask, visibility_mask_list, occlusion_mask_list, zoom_scale],
outputs=[vis_input, occluded_mask]
)
# 3D Amodal Reconstruction
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
image_to_3d,
inputs=[vis_input, occluded_mask, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, erode_kernel_size],
outputs=[output_buf, video_output],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
if __name__ == "__main__":
pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
except:
pass
demo.launch() |