Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pandas as pd
|
3 |
+
import gradio as gr
|
4 |
+
from sklearn.ensemble import RandomForestClassifier
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.preprocessing import LabelEncoder
|
7 |
+
|
8 |
+
# Load and preprocess the dataset
|
9 |
+
data = pd.read_csv('data.csv')
|
10 |
+
|
11 |
+
# Preprocessing
|
12 |
+
data['Age'] = data['Age'].fillna(data['Age'].median())
|
13 |
+
data['Embarked'] = data['Embarked'].fillna(data['Embarked'].mode()[0])
|
14 |
+
data['Fare'] = pd.to_numeric(data['Fare'], errors='coerce')
|
15 |
+
data['Fare'] = data['Fare'].fillna(data['Fare'].median())
|
16 |
+
|
17 |
+
label_encoder = LabelEncoder()
|
18 |
+
data['Gender'] = label_encoder.fit_transform(data['Gender'])
|
19 |
+
data['Embarked'] = label_encoder.fit_transform(data['Embarked'])
|
20 |
+
|
21 |
+
data.drop(['Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True)
|
22 |
+
|
23 |
+
# Feature selection
|
24 |
+
features = ['Pclass', 'Gender', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
|
25 |
+
X = data[features]
|
26 |
+
y = data['Survived']
|
27 |
+
|
28 |
+
# Train the model
|
29 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
30 |
+
model = RandomForestClassifier(random_state=42)
|
31 |
+
model.fit(X_train, y_train)
|
32 |
+
|
33 |
+
# Gradio interface function
|
34 |
+
def predict_survival(Pclass, Gender, Age, SibSp, Parch, Fare, Embarked):
|
35 |
+
# Encode Gender and Embarked
|
36 |
+
Gender_encoded = 1 if Gender.lower() == 'female' else 0
|
37 |
+
Embarked_encoded = {'s': 0, 'c': 1, 'q': 2}.get(Embarked.lower(), 0)
|
38 |
+
|
39 |
+
# Create input DataFrame
|
40 |
+
input_data = pd.DataFrame([[Pclass, Gender_encoded, Age, SibSp, Parch, Fare, Embarked_encoded]],
|
41 |
+
columns=features)
|
42 |
+
|
43 |
+
# Predict
|
44 |
+
prediction = model.predict(input_data)
|
45 |
+
return "Survived" if prediction[0] == 1 else "Did Not Survive"
|
46 |
+
|
47 |
+
# Gradio inputs and outputs
|
48 |
+
inputs = [
|
49 |
+
gr.Slider(1, 3, step=1, label="Passenger Class (Pclass)"),
|
50 |
+
gr.Radio(["Male", "Female"], label="Gender"),
|
51 |
+
gr.Slider(0, 80, step=1, label="Age (in years)"),
|
52 |
+
gr.Slider(0, 10, step=1, label="Siblings/Spouses (SibSp)"),
|
53 |
+
gr.Slider(0, 10, step=1, label="Parents/Children (Parch)"),
|
54 |
+
gr.Slider(0, 500, step=1, label="Ticket Fare (in $)"),
|
55 |
+
gr.Radio(["S (Southampton)", "C (Cherbourg)", "Q (Queenstown)"], label="Port of Embarkation (Embarked)")
|
56 |
+
]
|
57 |
+
|
58 |
+
outputs = gr.Textbox(label="Prediction")
|
59 |
+
|
60 |
+
# Launch Gradio interface
|
61 |
+
gr.Interface(fn=predict_survival, inputs=inputs, outputs=outputs, title="Titanic Survival Predictor").launch()
|