Smartlizardpy commited on
Commit
973b936
·
verified ·
1 Parent(s): 341b50f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -0
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import pandas as pd
3
+ import gradio as gr
4
+ from sklearn.ensemble import RandomForestClassifier
5
+ from sklearn.model_selection import train_test_split
6
+ from sklearn.preprocessing import LabelEncoder
7
+
8
+ # Load and preprocess the dataset
9
+ data = pd.read_csv('data.csv')
10
+
11
+ # Preprocessing
12
+ data['Age'] = data['Age'].fillna(data['Age'].median())
13
+ data['Embarked'] = data['Embarked'].fillna(data['Embarked'].mode()[0])
14
+ data['Fare'] = pd.to_numeric(data['Fare'], errors='coerce')
15
+ data['Fare'] = data['Fare'].fillna(data['Fare'].median())
16
+
17
+ label_encoder = LabelEncoder()
18
+ data['Gender'] = label_encoder.fit_transform(data['Gender'])
19
+ data['Embarked'] = label_encoder.fit_transform(data['Embarked'])
20
+
21
+ data.drop(['Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True)
22
+
23
+ # Feature selection
24
+ features = ['Pclass', 'Gender', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
25
+ X = data[features]
26
+ y = data['Survived']
27
+
28
+ # Train the model
29
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
30
+ model = RandomForestClassifier(random_state=42)
31
+ model.fit(X_train, y_train)
32
+
33
+ # Gradio interface function
34
+ def predict_survival(Pclass, Gender, Age, SibSp, Parch, Fare, Embarked):
35
+ # Encode Gender and Embarked
36
+ Gender_encoded = 1 if Gender.lower() == 'female' else 0
37
+ Embarked_encoded = {'s': 0, 'c': 1, 'q': 2}.get(Embarked.lower(), 0)
38
+
39
+ # Create input DataFrame
40
+ input_data = pd.DataFrame([[Pclass, Gender_encoded, Age, SibSp, Parch, Fare, Embarked_encoded]],
41
+ columns=features)
42
+
43
+ # Predict
44
+ prediction = model.predict(input_data)
45
+ return "Survived" if prediction[0] == 1 else "Did Not Survive"
46
+
47
+ # Gradio inputs and outputs
48
+ inputs = [
49
+ gr.Slider(1, 3, step=1, label="Passenger Class (Pclass)"),
50
+ gr.Radio(["Male", "Female"], label="Gender"),
51
+ gr.Slider(0, 80, step=1, label="Age (in years)"),
52
+ gr.Slider(0, 10, step=1, label="Siblings/Spouses (SibSp)"),
53
+ gr.Slider(0, 10, step=1, label="Parents/Children (Parch)"),
54
+ gr.Slider(0, 500, step=1, label="Ticket Fare (in $)"),
55
+ gr.Radio(["S (Southampton)", "C (Cherbourg)", "Q (Queenstown)"], label="Port of Embarkation (Embarked)")
56
+ ]
57
+
58
+ outputs = gr.Textbox(label="Prediction")
59
+
60
+ # Launch Gradio interface
61
+ gr.Interface(fn=predict_survival, inputs=inputs, outputs=outputs, title="Titanic Survival Predictor").launch()