import pandas as pd import gradio as gr from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder # Load and preprocess the dataset data = pd.read_csv('data.csv') # Preprocessing data['Age'] = data['Age'].fillna(data['Age'].median()) data['Embarked'] = data['Embarked'].fillna(data['Embarked'].mode()[0]) data['Fare'] = pd.to_numeric(data['Fare'], errors='coerce') data['Fare'] = data['Fare'].fillna(data['Fare'].median()) label_encoder = LabelEncoder() data['Gender'] = label_encoder.fit_transform(data['Gender']) data['Embarked'] = label_encoder.fit_transform(data['Embarked']) data.drop(['Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1, inplace=True) # Feature selection features = ['Pclass', 'Gender', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] X = data[features] y = data['Survived'] # Train the model X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = RandomForestClassifier(random_state=42) model.fit(X_train, y_train) # Gradio interface function def predict_survival(Pclass, Gender, Age, SibSp, Parch, Fare, Embarked): # Handle missing or invalid inputs if not Gender: return "⚠️ Error: Please select a Gender." if not Embarked: return "⚠️ Error: Please select a Port of Embarkation." # Encode Gender and Embarked Gender_encoded = 1 if Gender.lower() == 'female' else 0 Embarked_encoded = {'s': 0, 'c': 1, 'q': 2}.get(Embarked.lower(), 0) # Create input DataFrame input_data = pd.DataFrame([[Pclass, Gender_encoded, Age, SibSp, Parch, Fare, Embarked_encoded]], columns=features) # Predict prediction = model.predict(input_data) return "✅ Survived" if prediction[0] == 1 else "❌ Did Not Survive" # Gradio inputs and outputs inputs = [ gr.Slider(1, 3, step=1, label="Passenger Class (Pclass)"), gr.Radio(["Male", "Female"], label="Gender"), gr.Slider(0, 80, step=1, label="Age (in years)"), gr.Slider(0, 10, step=1, label="Siblings/Spouses (SibSp)"), gr.Slider(0, 10, step=1, label="Parents/Children (Parch)"), gr.Slider(0, 500, step=1, label="Ticket Fare (in $)"), gr.Radio(["S (Southampton)", "C (Cherbourg)", "Q (Queenstown)"], label="Port of Embarkation (Embarked)") ] outputs = gr.Textbox(label="Prediction or Error Message") # Launch Gradio interface gr.Interface(fn=predict_survival, inputs=inputs, outputs=outputs, title="Titanic Survival Predictor By Ozan").launch()