Spaces:
Runtime error
Runtime error
File size: 8,612 Bytes
30f37fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# coding: utf-8
import os.path as osp
from dataclasses import dataclass, field
from typing import List, Tuple, Union
import cv2
import numpy as np
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
from ..config.crop_config import CropConfig
from .crop import (
average_bbox_lst,
crop_image,
crop_image_by_bbox,
parse_bbox_from_landmark,
)
from .face_analysis_diy import FaceAnalysisDIY
from .io import contiguous
from .landmark_runner import LandmarkRunner
from .rprint import rlog as log
def make_abs_path(fn):
return osp.join(osp.dirname(osp.realpath(__file__)), fn)
@dataclass
class Trajectory:
start: int = -1 # start frame
end: int = -1 # end frame
lmk_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # lmk list
bbox_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # bbox list
frame_rgb_lst: Union[Tuple, List, np.ndarray] = field(
default_factory=list
) # frame list
lmk_crop_lst: Union[Tuple, List, np.ndarray] = field(
default_factory=list
) # lmk list
frame_rgb_crop_lst: Union[Tuple, List, np.ndarray] = field(
default_factory=list
) # frame crop list
class Cropper(object):
def __init__(self, **kwargs) -> None:
self.crop_cfg: CropConfig = kwargs.get("crop_cfg", None)
device_id = kwargs.get("device_id", 0)
flag_force_cpu = kwargs.get("flag_force_cpu", False)
if flag_force_cpu:
device = "cpu"
face_analysis_wrapper_provicer = ["CPUExecutionProvider"]
else:
device = "cuda"
face_analysis_wrapper_provicer = ["CUDAExecutionProvider"]
self.landmark_runner = LandmarkRunner(
ckpt_path=make_abs_path(self.crop_cfg.landmark_ckpt_path),
onnx_provider=device,
device_id=device_id,
)
self.landmark_runner.warmup()
self.face_analysis_wrapper = FaceAnalysisDIY(
name="buffalo_l",
root=make_abs_path(self.crop_cfg.insightface_root),
providers=face_analysis_wrapper_provicer,
)
self.face_analysis_wrapper.prepare(ctx_id=device_id, det_size=(512, 512))
self.face_analysis_wrapper.warmup()
def update_config(self, user_args):
for k, v in user_args.items():
if hasattr(self.crop_cfg, k):
setattr(self.crop_cfg, k, v)
def crop_source_image(self, img_rgb_: np.ndarray, crop_cfg: CropConfig):
# crop a source image and get neccessary information
img_rgb = img_rgb_.copy() # copy it
img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
src_face = self.face_analysis_wrapper.get(
img_bgr,
flag_do_landmark_2d_106=True,
direction=crop_cfg.direction,
max_face_num=crop_cfg.max_face_num,
)
if len(src_face) == 0:
log("No face detected in the source image.")
return None
elif len(src_face) > 1:
log(
f"More than one face detected in the image, only pick one face by rule {crop_cfg.direction}."
)
# NOTE: temporarily only pick the first face, to support multiple face in the future
src_face = src_face[0]
lmk = src_face.landmark_2d_106 # this is the 106 landmarks from insightface
# for (x, y) in lmk:
# cv2.circle(img_bgr, (int(x), int(y)), 2, (0, 255, 0), -1)
# cv2.imwrite("./landmark.png", img_bgr)
# crop the face
ret_dct = crop_image(
img_rgb, # ndarray
lmk, # 106x2 or Nx2
dsize=crop_cfg.dsize,
scale=crop_cfg.scale,
vx_ratio=crop_cfg.vx_ratio,
vy_ratio=crop_cfg.vy_ratio,
)
lmk = self.landmark_runner.run(img_rgb, lmk)
ret_dct["lmk_crop"] = lmk
# update a 256x256 version for network input
ret_dct["img_crop_256x256"] = cv2.resize(
ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA
)
ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / crop_cfg.dsize
# cv2.imwrite("./resize_image.png", ret_dct["img_crop_256x256"] )
return ret_dct
def crop_driving_video(self, driving_rgb_lst, **kwargs):
"""Tracking based landmarks/alignment and cropping"""
trajectory = Trajectory()
direction = kwargs.get("direction", "large-small")
for idx, frame_rgb in enumerate(driving_rgb_lst):
if idx == 0 or trajectory.start == -1:
src_face = self.face_analysis_wrapper.get(
contiguous(frame_rgb[..., ::-1]),
flag_do_landmark_2d_106=True,
direction=direction,
)
if len(src_face) == 0:
log(f"No face detected in the frame #{idx}")
continue
elif len(src_face) > 1:
log(
f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}."
)
src_face = src_face[0]
lmk = src_face.landmark_2d_106
lmk = self.landmark_runner.run(frame_rgb, lmk)
trajectory.start, trajectory.end = idx, idx
# for (x, y) in lmk:
# cv2.circle(frame_rgb, (int(x), int(y)), 2, (0, 255, 0), -1)
# cv2.imwrite("./landmarks.png", frame_rgb)
else:
lmk = self.landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1])
trajectory.end = idx
trajectory.lmk_lst.append(lmk)
ret_bbox = parse_bbox_from_landmark(
lmk,
scale=self.crop_cfg.scale_crop_video,
vx_ratio_crop_video=self.crop_cfg.vx_ratio_crop_video,
vy_ratio=self.crop_cfg.vy_ratio_crop_video,
)["bbox"]
bbox = [
ret_bbox[0, 0],
ret_bbox[0, 1],
ret_bbox[2, 0],
ret_bbox[2, 1],
] # 4,
trajectory.bbox_lst.append(bbox) # bbox
trajectory.frame_rgb_lst.append(frame_rgb)
global_bbox = average_bbox_lst(trajectory.bbox_lst)
for idx, (frame_rgb, lmk) in enumerate(
zip(trajectory.frame_rgb_lst, trajectory.lmk_lst)
):
ret_dct = crop_image_by_bbox(
frame_rgb,
global_bbox,
lmk=lmk,
dsize=kwargs.get("dsize", 512),
flag_rot=False,
borderValue=(0, 0, 0),
)
trajectory.frame_rgb_crop_lst.append(ret_dct["img_crop"])
trajectory.lmk_crop_lst.append(ret_dct["lmk_crop"])
return {
"frame_crop_lst": trajectory.frame_rgb_crop_lst,
"lmk_crop_lst": trajectory.lmk_crop_lst,
}
def calc_lmks_from_cropped_video(self, driving_rgb_crop_lst, **kwargs):
"""Tracking based landmarks/alignment"""
trajectory = Trajectory()
direction = kwargs.get("direction", "large-small")
for idx, frame_rgb_crop in enumerate(driving_rgb_crop_lst):
if idx == 0 or trajectory.start == -1:
src_face = self.face_analysis_wrapper.get(
contiguous(frame_rgb_crop[..., ::-1]), # convert to BGR
flag_do_landmark_2d_106=True,
direction=direction,
)
if len(src_face) == 0:
log(f"No face detected in the frame #{idx}")
raise Exception(f"No face detected in the frame #{idx}")
elif len(src_face) > 1:
log(
f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}."
)
src_face = src_face[0]
lmk = src_face.landmark_2d_106
lmk = self.landmark_runner.run(frame_rgb_crop, lmk)
trajectory.start, trajectory.end = idx, idx
else:
lmk = self.landmark_runner.run(frame_rgb_crop, trajectory.lmk_lst[-1])
trajectory.end = idx
trajectory.lmk_lst.append(lmk)
return trajectory.lmk_lst
|