smile
test build
7e055ad
raw
history blame
1.74 kB
from enum import Enum
class Navigation(Enum):
TEXT_LEADERBOARD = "Text Leaderboard"
MULTIMODAL_LEADERBOARD = "Multimodal Leaderboard"
class TaskCategory(Enum):
LAW = "Law"
CODE = "Code"
CONVERSATIONAL = "Conversational"
TECH = "Tech"
LONG_CONTEXT = "Long-context"
MULTILINGUAL = "Multilingual"
class ModelProvider(Enum):
OPENAI = "OpenAI"
VOYAGEAI = "VoyageAI"
COHERE = "Cohere"
OTHERS = "Others"
class EvaluationMetric(Enum):
NDCG_1 = "NDCG@1"
NDCG_3 = "NDCG@3"
NDCG_5 = "NDCG@5"
NDCG_10 = "NDCG@10"
NDCG_20 = "NDCG@20"
NDCG_50 = "NDCG@50"
NDCG_100 = "NDCG@100"
RECALL_1 = "RECALL@1"
RECALL_3 = "RECALL@3"
RECALL_5 = "RECALL@5"
RECALL_10 = "RECALL@10"
RECALL_20 = "RECALL@20"
RECALL_50 = "RECALL@50"
RECALL_100 = "RECALL@100"
PRECISION_1 = "PRECISION@1"
PRECISION_3 = "PRECISION@3"
PRECISION_5 = "PRECISION@5"
PRECISION_10 = "PRECISION@10"
PRECISION_20 = "PRECISION@20"
PRECISION_50 = "PRECISION@50"
PRECISION_100 = "PRECISION@100"
class EmbdDtype(Enum):
ALL = "all"
FLOAT_32 = "float32"
INT_8 = "int8"
BINARY = "binary"
class EmbdDim(Enum):
OP1 = "<=1k"
OP2 = "1k-2k"
OP3 = "2k-5k"
OP4 = ">=5k"
class Similarity(Enum):
ALL = "all"
COSINE = "cosine"
DOT = "dot"
EUCLIDEAN = "euclidean"
LEADERBOARD_MAP = {
"Text": [
"text",
"law",
"long-context",
"finance",
"conversational",
"tech",
"multilingual",
"code",
"healthcare"
],
"Multimodal": [
"text-to-photo",
"document-screenshot",
"figures-and-tables",
"text-to-text"
]
}