Spaces:
No application file
No application file
""" | |
Data service provider | |
""" | |
import json | |
from typing import List | |
import pandas as pd | |
from app.backend.constant import ModelProvider | |
from utils.cache_decorator import cache_df_with_custom_key, cache_dict_with_custom_key | |
from utils.http_utils import get | |
COLUMNS = ['model_name', 'group_name', 'leaderboard', 'dataset_name', | |
'embd_dtype', 'embd_dim', 'num_params', 'max_tokens', 'similarity', | |
'query_instruct', 'corpus_instruct', 'ndcg_at_1', 'ndcg_at_3', 'ndcg_at_5', | |
'ndcg_at_10', 'ndcg_at_20', | |
'ndcg_at_50', 'ndcg_at_100', 'recall_at_1', 'recall_at_3', | |
'recall_at_5', 'recall_at_10', 'recall_at_20', 'recall_at_50', | |
'recall_at_100', 'precision_at_1', 'precision_at_3', 'precision_at_5', | |
'precision_at_10', 'precision_at_20', 'precision_at_50', | |
'precision_at_100'] | |
COLUMNS_TYPES = ["markdown", "str", 'str', 'str', | |
'str', 'str', 'number', 'number', 'str', | |
'str', 'str', 'number', 'number', 'number', | |
'number', 'number', | |
'number', 'number', 'number', 'number', | |
'number', 'number', 'number', 'number', | |
'number', 'number', 'number', 'number', | |
'number', 'number', 'number', | |
'number'] | |
GIT_URL = "https://raw.githubusercontent.com/embedding-benchmark/ebr/refs/heads/main/results/" | |
DATASET_URL = f"{GIT_URL}datasets.json" | |
MODEL_URL = f"{GIT_URL}models.json" | |
RESULT_URL = f"{GIT_URL}results.json" | |
class DataEngine: | |
def __init__(self): | |
self.df = self.init_dataframe() | |
def models(self): | |
""" | |
Get models data | |
""" | |
res = get(MODEL_URL) | |
if res.status_code == 200: | |
return res.json() | |
return {} | |
def datasets(self): | |
""" | |
Get tasks data | |
""" | |
res = get(DATASET_URL) | |
if res.status_code == 200: | |
return res.json() | |
return {} | |
def results(self): | |
""" | |
Get results data | |
""" | |
res = get(RESULT_URL) | |
if res.status_code == 200: | |
return res.json() | |
return {} | |
def init_dataframe(self): | |
""" | |
Initialize DataFrame | |
""" | |
return self.jsons_to_df() | |
def get_data(self): | |
""" | |
Get the full dataset | |
""" | |
df = self.df.copy() | |
# 移除指定列 | |
columns_to_remove = ['group_name', 'leaderboard', 'dataset_name'] | |
df = df.drop(columns=columns_to_remove) | |
# 按 NDCG@10 降序排序 | |
return df.sort_values(by='ndcg_at_10', ascending=False) | |
def get_filtered_data(self, navigation=None, embd_type=None, embd_dims=None, similarity=None): | |
""" | |
Get filtered dataset based on criteria | |
""" | |
filtered_df = self.df.copy() | |
if navigation and navigation != "all": | |
filtered_df = filtered_df[filtered_df['leaderboard'] == navigation] | |
if embd_type and embd_type != "all": | |
filtered_df = filtered_df[filtered_df['embd_dtype'] == embd_type] | |
if similarity and similarity != "all": | |
filtered_df = filtered_df[filtered_df['similarity'] == similarity] | |
if embd_dims and isinstance(embd_dims, list) and len(embd_dims) > 0: | |
filtered_df = filtered_df[filtered_df['embd_dim'].isin(embd_dims)] | |
# 移除指定列 | |
columns_to_remove = ['group_name', 'leaderboard', 'dataset_name'] | |
filtered_df = filtered_df.drop(columns=columns_to_remove) | |
# 按 NDCG@10 降序排序 | |
return filtered_df.sort_values(by='ndcg_at_10', ascending=False) | |
def _check_providers(self, organization: str, providers: List): | |
if not providers: | |
return True | |
if "Others" in providers: | |
if organization not in ( | |
ModelProvider.OPENAI.value, ModelProvider.COHERE.value, ModelProvider.VOYAGEAI.value): | |
return True | |
return organization in providers | |
def jsons_to_df(self): | |
results_list = self.results | |
df_results_list = [] | |
for result_dict in results_list: | |
dataset_name = result_dict["dataset_name"] | |
df_result_row = pd.DataFrame(result_dict["results"]) | |
df_result_row["dataset_name"] = dataset_name | |
df_results_list.append(df_result_row) | |
df_result = pd.concat(df_results_list) | |
df_datasets_list = [] | |
for item in self.datasets: | |
dataset_names = item["datasets"] | |
df_dataset_row = pd.DataFrame( | |
{ | |
"group_name": [item["name"] for _ in range(len(dataset_names))], | |
"dataset_name": dataset_names, | |
"leaderboard": [item["leaderboard"] for _ in range(len(dataset_names))] | |
} | |
) | |
df_datasets_list.append(df_dataset_row) | |
df_dataset = pd.concat(df_datasets_list).drop_duplicates() | |
models_list = self.models | |
df_model = pd.DataFrame(models_list) | |
df = pd.merge(df_result, df_model, on=["model_name", "embd_dim", "embd_dtype"], how="inner") | |
df = pd.merge(df, df_dataset, on="dataset_name", how="inner") | |
df["model_name"] = df.apply(lambda | |
x: f"""<a target=\"_blank\" style=\"text-decoration: underline\" href=\"{x["reference"]}\">{x["model_name"]}</a>""", | |
axis=1) | |
if df.empty: | |
return pd.DataFrame(columns=COLUMNS) | |
return df[COLUMNS] | |
def filter_df(self, df_result: pd.DataFrame, embd_dtype: str, embd_dims: List, similarity: str, max_tokens: int): | |
""" | |
filter_by_providers | |
""" | |
if not embd_dims: | |
return df_result[0:0] | |
if embd_dtype and embd_dtype != "all": | |
df_result = df_result[df_result['embd_dtype'] == embd_dtype][:] | |
if similarity and similarity != "all": | |
df_result = df_result[df_result['similarity'] == similarity][:] | |
if max_tokens: | |
df_result = df_result[df_result['max_tokens'] >= max_tokens][:] | |
if embd_dims: | |
bins = [0, 1000, 2000, 5000, float('inf')] | |
labels = ['<=1k', '1k-2k', '2k-5k', '>=5k'] | |
# 使用 pd.cut 进行分组 | |
df_result['value_group'] = pd.cut(df_result['embd_dim'], bins=bins, labels=labels, right=False) | |
df_result = df_result[df_result['value_group'].isin(embd_dims)] | |
df_result = df_result[COLUMNS] | |
return df_result | |
def summarize_dataframe(self): | |
""" | |
Summarize data statistics | |
""" | |