Spaces:
Running
Running
File size: 7,667 Bytes
5560186 9e296e4 5560186 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
"""
Data service provider
"""
import json
from typing import List
import pandas as pd
from app.backend.constant import ModelProvider
class DataEngine:
def __init__(self):
self.df = self.init_dataframe()
@property
def leaderboards(self):
"""
Get leaderboard data
"""
with open('./mock_data/leaderboard.json', 'r') as f:
return json.load(f)
@property
def models(self):
"""
Get models data
"""
with open('./mock_data/models.json', 'r') as f:
return json.load(f)
@property
def tasks(self):
"""
Get tasks data
"""
with open('./mock_data/tasks.json', 'r') as f:
return json.load(f)
@property
def results(self):
"""
Get results data
"""
with open('./mock_data/results.json', 'r') as f:
return json.load(f)
def init_dataframe(self):
"""
Initialize DataFrame
"""
d = {"hello": [123], "world": [456]}
return pd.DataFrame(d)
def _check_providers(self, organization: str, providers: List):
if not providers:
return True
if "Others" in providers:
if organization not in (
ModelProvider.OPENAI.value, ModelProvider.COHERE.value, ModelProvider.VOYAGEAI.value):
return True
return organization in providers
def filter_df(self, leaderboard: str, task: str, providers: List, sort_key: str):
tasks = []
for lb in self.leaderboards:
if lb["name"] == leaderboard:
tasks = lb["tasks"]
break
df_list = []
for t in (filter(lambda x: x.upper() == task.upper(), tasks)):
datasets = []
for ta in self.tasks:
if ta["slug"].upper() == t.upper():
datasets = ta["datasets"]
break
for model in self.models:
if t in model["tasks"] and self._check_providers(model["organization"], providers):
for dataset in datasets:
results = self.results[dataset]
for result in results:
if result['model_name'] == model["model_name"]:
d = result["results"]
d["class"] = result["class"]
d["organization"] = result["organization"]
d["model_name"] = result["model_name"]
df = pd.DataFrame([d])
df = df[["class", "organization", "model_name", "ndcg_at_1", "ndcg_at_3", "ndcg_at_5",
"ndcg_at_10",
"ndcg_at_20", "ndcg_at_50", "ndcg_at_100", "recall_at_1", "recall_at_3",
"recall_at_5", "recall_at_10",
"recall_at_20", "recall_at_50", "recall_at_100", "precision_at_1",
"precision_at_3", "precision_at_5",
"precision_at_10", "precision_at_20", "precision_at_50", "precision_at_100"]]
df_list.append(df)
if df_list:
return pd.concat(df_list).sort_values(by=sort_key.replace("@", '_at_').lower())
return pd.DataFrame(columns=["class", "organization", "model_name", "ndcg_at_1", "ndcg_at_3", "ndcg_at_5",
"ndcg_at_10",
"ndcg_at_20", "ndcg_at_50", "ndcg_at_100", "recall_at_1", "recall_at_3",
"recall_at_5", "recall_at_10",
"recall_at_20", "recall_at_50", "recall_at_100", "precision_at_1",
"precision_at_3", "precision_at_5",
"precision_at_10", "precision_at_20", "precision_at_50", "precision_at_100"])
def get_model_result(self, model: dict, task_datasets_map: dict, results: dict):
"""
get_model_result
"""
model_class = model["class"]
model_organization = model["organization"]
model_model_name = model["model_name"]
for leaderboard in model["leaderboards"]:
for task in model["tasks"]:
for dateset in task_datasets_map.get(task, []):
for result in results[dateset]:
if result["model_name"] == model_model_name:
d_result = result["results"]
d_result["class"] = model_class
d_result["organization"] = model_organization
d_result["model_name"] = model_model_name
d_result["leaderboard"] = leaderboard
d_result["dateset"] = dateset
d_result["task"] = task
yield d_result
def jsons_to_df(self):
# change leaderboards to task_leaderboard_map
task_leaderboard_map = {}
leaderboards = self.leaderboards
for leaderboard in leaderboards:
for task in leaderboard["tasks"]:
task_leaderboard_map[task] = leaderboard["name"]
# change tasks to task_datasets_map
task_datasets_map = {}
for task in self.tasks:
task_datasets_map[task["slug"]] = task["datasets"]
df_results_list = []
results = self.results
for model in self.models:
for d_result in self.get_model_result(model, task_datasets_map, results):
if d_result:
df_results_list.append(pd.DataFrame([d_result]))
if df_results_list:
df_result = pd.concat(df_results_list)
return df_result[
["leaderboard", "task", "class", "organization", "model_name", "dateset", "ndcg_at_1", "ndcg_at_3",
"ndcg_at_5",
"ndcg_at_10",
"ndcg_at_20", "ndcg_at_50", "ndcg_at_100", "recall_at_1", "recall_at_3",
"recall_at_5", "recall_at_10",
"recall_at_20", "recall_at_50", "recall_at_100", "precision_at_1",
"precision_at_3", "precision_at_5",
"precision_at_10", "precision_at_20", "precision_at_50", "precision_at_100"]], leaderboards
return pd.DataFrame(
columns=["leaderboard", "task", "class", "organization", "model_name", "dateset", "ndcg_at_1", "ndcg_at_3",
"ndcg_at_5",
"ndcg_at_10",
"ndcg_at_20", "ndcg_at_50", "ndcg_at_100", "recall_at_1", "recall_at_3",
"recall_at_5", "recall_at_10",
"recall_at_20", "recall_at_50", "recall_at_100", "precision_at_1",
"precision_at_3", "precision_at_5",
"precision_at_10", "precision_at_20", "precision_at_50", "precision_at_100"]), leaderboards
def filter_by_providers(self, df_result: pd.DataFrame, providers: List):
"""
filter_by_providers
"""
if not providers:
# providers are empty, return empty
return df_result[0:0]
return df_result[df_result['organization'].apply(lambda x: self._check_providers(x, providers))]
def summarize_dataframe(self):
"""
Summarize data statistics
"""
|