Spaces:
Paused
Paused
File size: 3,346 Bytes
5a486d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
#pragma once
#include <ATen/ATen.h>
#include <vector>
std::vector<at::Tensor> mean_var_cpu(at::Tensor x);
std::vector<at::Tensor> mean_var_cuda(at::Tensor x);
std::vector<at::Tensor> mean_var_cuda_h(at::Tensor x);
at::Tensor forward_cpu(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias,
bool affine, float eps);
at::Tensor forward_cuda(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias,
bool affine, float eps);
at::Tensor forward_cuda_h(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias,
bool affine, float eps);
std::vector<at::Tensor> edz_eydz_cpu(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias,
bool affine, float eps);
std::vector<at::Tensor> edz_eydz_cuda(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias,
bool affine, float eps);
std::vector<at::Tensor> edz_eydz_cuda_h(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias,
bool affine, float eps);
at::Tensor backward_cpu(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias,
at::Tensor edz, at::Tensor eydz, bool affine, float eps);
at::Tensor backward_cuda(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias,
at::Tensor edz, at::Tensor eydz, bool affine, float eps);
at::Tensor backward_cuda_h(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias,
at::Tensor edz, at::Tensor eydz, bool affine, float eps);
void leaky_relu_backward_cpu(at::Tensor z, at::Tensor dz, float slope);
void leaky_relu_backward_cuda(at::Tensor z, at::Tensor dz, float slope);
void leaky_relu_backward_cuda_h(at::Tensor z, at::Tensor dz, float slope);
void elu_backward_cpu(at::Tensor z, at::Tensor dz);
void elu_backward_cuda(at::Tensor z, at::Tensor dz);
static void get_dims(at::Tensor x, int64_t& num, int64_t& chn, int64_t& sp) {
num = x.size(0);
chn = x.size(1);
sp = 1;
for (int64_t i = 2; i < x.ndimension(); ++i)
sp *= x.size(i);
}
/*
* Specialized CUDA reduction functions for BN
*/
#ifdef __CUDACC__
#include "utils/cuda.cuh"
template <typename T, typename Op>
__device__ T reduce(Op op, int plane, int N, int S) {
T sum = (T)0;
for (int batch = 0; batch < N; ++batch) {
for (int x = threadIdx.x; x < S; x += blockDim.x) {
sum += op(batch, plane, x);
}
}
// sum over NumThreads within a warp
sum = warpSum(sum);
// 'transpose', and reduce within warp again
__shared__ T shared[32];
__syncthreads();
if (threadIdx.x % WARP_SIZE == 0) {
shared[threadIdx.x / WARP_SIZE] = sum;
}
if (threadIdx.x >= blockDim.x / WARP_SIZE && threadIdx.x < WARP_SIZE) {
// zero out the other entries in shared
shared[threadIdx.x] = (T)0;
}
__syncthreads();
if (threadIdx.x / WARP_SIZE == 0) {
sum = warpSum(shared[threadIdx.x]);
if (threadIdx.x == 0) {
shared[0] = sum;
}
}
__syncthreads();
// Everyone picks it up, should be broadcast into the whole gradInput
return shared[0];
}
#endif
|