Spaces:
Paused
Paused
import pdb | |
from pathlib import Path | |
import sys | |
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute() | |
sys.path.insert(0, str(PROJECT_ROOT)) | |
import os | |
import torch | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import random | |
import time | |
import pdb | |
from pipelines_ootd.pipeline_ootd import OotdPipeline | |
from pipelines_ootd.unet_garm_2d_condition import UNetGarm2DConditionModel | |
from pipelines_ootd.unet_vton_2d_condition import UNetVton2DConditionModel | |
from diffusers import UniPCMultistepScheduler | |
from diffusers import AutoencoderKL | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from transformers import AutoProcessor, CLIPVisionModelWithProjection | |
from transformers import CLIPTextModel, CLIPTokenizer | |
VIT_PATH = "openai/clip-vit-large-patch14" | |
VAE_PATH = "./checkpoints/ootd" | |
UNET_PATH = "./checkpoints/ootd/ootd_dc/checkpoint-36000" | |
MODEL_PATH = "./checkpoints/ootd" | |
class OOTDiffusionDC: | |
def __init__(self, gpu_id): | |
# self.gpu_id = 'cuda:' + str(gpu_id) | |
vae = AutoencoderKL.from_pretrained( | |
VAE_PATH, | |
subfolder="vae", | |
torch_dtype=torch.float16, | |
) | |
unet_garm = UNetGarm2DConditionModel.from_pretrained( | |
UNET_PATH, | |
subfolder="unet_garm", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
) | |
unet_vton = UNetVton2DConditionModel.from_pretrained( | |
UNET_PATH, | |
subfolder="unet_vton", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
) | |
self.pipe = OotdPipeline.from_pretrained( | |
MODEL_PATH, | |
unet_garm=unet_garm, | |
unet_vton=unet_vton, | |
vae=vae, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True, | |
safety_checker=None, | |
requires_safety_checker=False, | |
)#.to(self.gpu_id) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.auto_processor = AutoProcessor.from_pretrained(VIT_PATH) | |
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(VIT_PATH)#.to(self.gpu_id) | |
self.tokenizer = CLIPTokenizer.from_pretrained( | |
MODEL_PATH, | |
subfolder="tokenizer", | |
) | |
self.text_encoder = CLIPTextModel.from_pretrained( | |
MODEL_PATH, | |
subfolder="text_encoder", | |
)#.to(self.gpu_id) | |
def tokenize_captions(self, captions, max_length): | |
inputs = self.tokenizer( | |
captions, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt" | |
) | |
return inputs.input_ids | |
def __call__(self, | |
model_type='hd', | |
category='upperbody', | |
image_garm=None, | |
image_vton=None, | |
mask=None, | |
image_ori=None, | |
num_samples=1, | |
num_steps=20, | |
image_scale=1.0, | |
seed=-1, | |
): | |
if seed == -1: | |
random.seed(time.time()) | |
seed = random.randint(0, 2147483647) | |
print('Initial seed: ' + str(seed)) | |
generator = torch.manual_seed(seed) | |
with torch.no_grad(): | |
prompt_image = self.auto_processor(images=image_garm, return_tensors="pt").to('cuda') | |
prompt_image = self.image_encoder(prompt_image.data['pixel_values']).image_embeds | |
prompt_image = prompt_image.unsqueeze(1) | |
if model_type == 'hd': | |
prompt_embeds = self.text_encoder(self.tokenize_captions([""], 2).to('cuda'))[0] | |
prompt_embeds[:, 1:] = prompt_image[:] | |
elif model_type == 'dc': | |
prompt_embeds = self.text_encoder(self.tokenize_captions([category], 3).to('cuda'))[0] | |
prompt_embeds = torch.cat([prompt_embeds, prompt_image], dim=1) | |
else: | |
raise ValueError("model_type must be \'hd\' or \'dc\'!") | |
images = self.pipe(prompt_embeds=prompt_embeds, | |
image_garm=image_garm, | |
image_vton=image_vton, | |
mask=mask, | |
image_ori=image_ori, | |
num_inference_steps=num_steps, | |
image_guidance_scale=image_scale, | |
num_images_per_prompt=num_samples, | |
generator=generator, | |
).images | |
return images | |