Spaces:
Paused
Paused
Delete ootd
Browse files- ootd/inference_ootd.py +0 -133
- ootd/inference_ootd_dc.py +0 -132
- ootd/inference_ootd_hd.py +0 -132
- ootd/pipelines_ootd/attention_garm.py +0 -402
- ootd/pipelines_ootd/attention_vton.py +0 -407
- ootd/pipelines_ootd/pipeline_ootd.py +0 -846
- ootd/pipelines_ootd/transformer_garm_2d.py +0 -449
- ootd/pipelines_ootd/transformer_vton_2d.py +0 -452
- ootd/pipelines_ootd/unet_garm_2d_blocks.py +0 -0
- ootd/pipelines_ootd/unet_garm_2d_condition.py +0 -1183
- ootd/pipelines_ootd/unet_vton_2d_blocks.py +0 -0
- ootd/pipelines_ootd/unet_vton_2d_condition.py +0 -1183
ootd/inference_ootd.py
DELETED
@@ -1,133 +0,0 @@
|
|
1 |
-
import pdb
|
2 |
-
from pathlib import Path
|
3 |
-
import sys
|
4 |
-
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
|
5 |
-
sys.path.insert(0, str(PROJECT_ROOT))
|
6 |
-
import os
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import numpy as np
|
10 |
-
from PIL import Image
|
11 |
-
import cv2
|
12 |
-
|
13 |
-
import random
|
14 |
-
import time
|
15 |
-
import pdb
|
16 |
-
|
17 |
-
from pipelines_ootd.pipeline_ootd import OotdPipeline
|
18 |
-
from pipelines_ootd.unet_garm_2d_condition import UNetGarm2DConditionModel
|
19 |
-
from pipelines_ootd.unet_vton_2d_condition import UNetVton2DConditionModel
|
20 |
-
from diffusers import UniPCMultistepScheduler
|
21 |
-
from diffusers import AutoencoderKL
|
22 |
-
|
23 |
-
import torch.nn as nn
|
24 |
-
import torch.nn.functional as F
|
25 |
-
from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
26 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
27 |
-
|
28 |
-
VIT_PATH = "openai/clip-vit-large-patch14"
|
29 |
-
VAE_PATH = "levihsu/ootd"
|
30 |
-
UNET_PATH = "levihsu/ootd"
|
31 |
-
MODEL_PATH = "levihsu/ootd"
|
32 |
-
|
33 |
-
class OOTDiffusion:
|
34 |
-
|
35 |
-
def __init__(self, gpu_id):
|
36 |
-
self.gpu_id = 'cuda:' + str(gpu_id)
|
37 |
-
|
38 |
-
vae = AutoencoderKL.from_pretrained(
|
39 |
-
VAE_PATH,
|
40 |
-
subfolder="vae",
|
41 |
-
torch_dtype=torch.float16,
|
42 |
-
)
|
43 |
-
|
44 |
-
unet_garm = UNetGarm2DConditionModel.from_pretrained(
|
45 |
-
UNET_PATH,
|
46 |
-
subfolder="unet_garm",
|
47 |
-
torch_dtype=torch.float16,
|
48 |
-
use_safetensors=True,
|
49 |
-
)
|
50 |
-
unet_vton = UNetVton2DConditionModel.from_pretrained(
|
51 |
-
UNET_PATH,
|
52 |
-
subfolder="unet_vton",
|
53 |
-
torch_dtype=torch.float16,
|
54 |
-
use_safetensors=True,
|
55 |
-
)
|
56 |
-
|
57 |
-
self.pipe = OotdPipeline.from_pretrained(
|
58 |
-
MODEL_PATH,
|
59 |
-
unet_garm=unet_garm,
|
60 |
-
unet_vton=unet_vton,
|
61 |
-
vae=vae,
|
62 |
-
torch_dtype=torch.float16,
|
63 |
-
variant="fp16",
|
64 |
-
use_safetensors=True,
|
65 |
-
safety_checker=None,
|
66 |
-
requires_safety_checker=False,
|
67 |
-
).to(self.gpu_id)
|
68 |
-
|
69 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
70 |
-
|
71 |
-
self.auto_processor = AutoProcessor.from_pretrained(VIT_PATH)
|
72 |
-
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(VIT_PATH).to(self.gpu_id)
|
73 |
-
|
74 |
-
self.tokenizer = CLIPTokenizer.from_pretrained(
|
75 |
-
MODEL_PATH,
|
76 |
-
subfolder="tokenizer",
|
77 |
-
)
|
78 |
-
self.text_encoder = CLIPTextModel.from_pretrained(
|
79 |
-
MODEL_PATH,
|
80 |
-
subfolder="text_encoder",
|
81 |
-
).to(self.gpu_id)
|
82 |
-
|
83 |
-
|
84 |
-
def tokenize_captions(self, captions, max_length):
|
85 |
-
inputs = self.tokenizer(
|
86 |
-
captions, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
|
87 |
-
)
|
88 |
-
return inputs.input_ids
|
89 |
-
|
90 |
-
|
91 |
-
def __call__(self,
|
92 |
-
model_type='hd',
|
93 |
-
category='upperbody',
|
94 |
-
image_garm=None,
|
95 |
-
image_vton=None,
|
96 |
-
mask=None,
|
97 |
-
image_ori=None,
|
98 |
-
num_samples=1,
|
99 |
-
num_steps=20,
|
100 |
-
image_scale=1.0,
|
101 |
-
seed=-1,
|
102 |
-
):
|
103 |
-
if seed == -1:
|
104 |
-
random.seed(time.time())
|
105 |
-
seed = random.randint(0, 2147483647)
|
106 |
-
print('Initial seed: ' + str(seed))
|
107 |
-
generator = torch.manual_seed(seed)
|
108 |
-
|
109 |
-
with torch.no_grad():
|
110 |
-
prompt_image = self.auto_processor(images=image_garm, return_tensors="pt").to(self.gpu_id)
|
111 |
-
prompt_image = self.image_encoder(prompt_image.data['pixel_values']).image_embeds
|
112 |
-
prompt_image = prompt_image.unsqueeze(1)
|
113 |
-
if model_type == 'hd':
|
114 |
-
prompt_embeds = self.text_encoder(self.tokenize_captions([""], 2).to(self.gpu_id))[0]
|
115 |
-
prompt_embeds[:, 1:] = prompt_image[:]
|
116 |
-
elif model_type == 'dc':
|
117 |
-
prompt_embeds = self.text_encoder(self.tokenize_captions([category], 3).to(self.gpu_id))[0]
|
118 |
-
prompt_embeds = torch.cat([prompt_embeds, prompt_image], dim=1)
|
119 |
-
else:
|
120 |
-
raise ValueError("model_type must be \'hd\' or \'dc\'!")
|
121 |
-
|
122 |
-
images = self.pipe(prompt_embeds=prompt_embeds,
|
123 |
-
image_garm=image_garm,
|
124 |
-
image_vton=image_vton,
|
125 |
-
mask=mask,
|
126 |
-
image_ori=image_ori,
|
127 |
-
num_inference_steps=num_steps,
|
128 |
-
image_guidance_scale=image_scale,
|
129 |
-
num_images_per_prompt=num_samples,
|
130 |
-
generator=generator,
|
131 |
-
).images
|
132 |
-
|
133 |
-
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ootd/inference_ootd_dc.py
DELETED
@@ -1,132 +0,0 @@
|
|
1 |
-
import pdb
|
2 |
-
from pathlib import Path
|
3 |
-
import sys
|
4 |
-
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
|
5 |
-
sys.path.insert(0, str(PROJECT_ROOT))
|
6 |
-
import os
|
7 |
-
import torch
|
8 |
-
import numpy as np
|
9 |
-
from PIL import Image
|
10 |
-
import cv2
|
11 |
-
|
12 |
-
import random
|
13 |
-
import time
|
14 |
-
import pdb
|
15 |
-
|
16 |
-
from pipelines_ootd.pipeline_ootd import OotdPipeline
|
17 |
-
from pipelines_ootd.unet_garm_2d_condition import UNetGarm2DConditionModel
|
18 |
-
from pipelines_ootd.unet_vton_2d_condition import UNetVton2DConditionModel
|
19 |
-
from diffusers import UniPCMultistepScheduler
|
20 |
-
from diffusers import AutoencoderKL
|
21 |
-
|
22 |
-
import torch.nn as nn
|
23 |
-
import torch.nn.functional as F
|
24 |
-
from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
25 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
26 |
-
|
27 |
-
VIT_PATH = "openai/clip-vit-large-patch14"
|
28 |
-
VAE_PATH = "levihsu/ootd"
|
29 |
-
UNET_PATH = "levihsu/ootd"
|
30 |
-
MODEL_PATH = "levihsu/ootd"
|
31 |
-
|
32 |
-
class OOTDiffusionDC:
|
33 |
-
|
34 |
-
def __init__(self, gpu_id):
|
35 |
-
self.gpu_id = 'cuda:' + str(gpu_id)
|
36 |
-
|
37 |
-
vae = AutoencoderKL.from_pretrained(
|
38 |
-
VAE_PATH,
|
39 |
-
subfolder="vae",
|
40 |
-
torch_dtype=torch.float16,
|
41 |
-
)
|
42 |
-
|
43 |
-
unet_garm = UNetGarm2DConditionModel.from_pretrained(
|
44 |
-
UNET_PATH,
|
45 |
-
subfolder="ootd_dc/checkpoint-36000/unet_garm",
|
46 |
-
torch_dtype=torch.float16,
|
47 |
-
use_safetensors=True,
|
48 |
-
)
|
49 |
-
unet_vton = UNetVton2DConditionModel.from_pretrained(
|
50 |
-
UNET_PATH,
|
51 |
-
subfolder="ootd_dc/checkpoint-36000/unet_vton",
|
52 |
-
torch_dtype=torch.float16,
|
53 |
-
use_safetensors=True,
|
54 |
-
)
|
55 |
-
|
56 |
-
self.pipe = OotdPipeline.from_pretrained(
|
57 |
-
MODEL_PATH,
|
58 |
-
unet_garm=unet_garm,
|
59 |
-
unet_vton=unet_vton,
|
60 |
-
vae=vae,
|
61 |
-
torch_dtype=torch.float16,
|
62 |
-
variant="fp16",
|
63 |
-
use_safetensors=True,
|
64 |
-
safety_checker=None,
|
65 |
-
requires_safety_checker=False,
|
66 |
-
).to(self.gpu_id)
|
67 |
-
|
68 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
69 |
-
|
70 |
-
self.auto_processor = AutoProcessor.from_pretrained(VIT_PATH)
|
71 |
-
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(VIT_PATH).to(self.gpu_id)
|
72 |
-
|
73 |
-
self.tokenizer = CLIPTokenizer.from_pretrained(
|
74 |
-
MODEL_PATH,
|
75 |
-
subfolder="tokenizer",
|
76 |
-
)
|
77 |
-
self.text_encoder = CLIPTextModel.from_pretrained(
|
78 |
-
MODEL_PATH,
|
79 |
-
subfolder="text_encoder",
|
80 |
-
).to(self.gpu_id)
|
81 |
-
|
82 |
-
|
83 |
-
def tokenize_captions(self, captions, max_length):
|
84 |
-
inputs = self.tokenizer(
|
85 |
-
captions, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
|
86 |
-
)
|
87 |
-
return inputs.input_ids
|
88 |
-
|
89 |
-
|
90 |
-
def __call__(self,
|
91 |
-
model_type='hd',
|
92 |
-
category='upperbody',
|
93 |
-
image_garm=None,
|
94 |
-
image_vton=None,
|
95 |
-
mask=None,
|
96 |
-
image_ori=None,
|
97 |
-
num_samples=1,
|
98 |
-
num_steps=20,
|
99 |
-
image_scale=1.0,
|
100 |
-
seed=-1,
|
101 |
-
):
|
102 |
-
if seed == -1:
|
103 |
-
random.seed(time.time())
|
104 |
-
seed = random.randint(0, 2147483647)
|
105 |
-
print('Initial seed: ' + str(seed))
|
106 |
-
generator = torch.manual_seed(seed)
|
107 |
-
|
108 |
-
with torch.no_grad():
|
109 |
-
prompt_image = self.auto_processor(images=image_garm, return_tensors="pt").to(self.gpu_id)
|
110 |
-
prompt_image = self.image_encoder(prompt_image.data['pixel_values']).image_embeds
|
111 |
-
prompt_image = prompt_image.unsqueeze(1)
|
112 |
-
if model_type == 'hd':
|
113 |
-
prompt_embeds = self.text_encoder(self.tokenize_captions([""], 2).to(self.gpu_id))[0]
|
114 |
-
prompt_embeds[:, 1:] = prompt_image[:]
|
115 |
-
elif model_type == 'dc':
|
116 |
-
prompt_embeds = self.text_encoder(self.tokenize_captions([category], 3).to(self.gpu_id))[0]
|
117 |
-
prompt_embeds = torch.cat([prompt_embeds, prompt_image], dim=1)
|
118 |
-
else:
|
119 |
-
raise ValueError("model_type must be \'hd\' or \'dc\'!")
|
120 |
-
|
121 |
-
images = self.pipe(prompt_embeds=prompt_embeds,
|
122 |
-
image_garm=image_garm,
|
123 |
-
image_vton=image_vton,
|
124 |
-
mask=mask,
|
125 |
-
image_ori=image_ori,
|
126 |
-
num_inference_steps=num_steps,
|
127 |
-
image_guidance_scale=image_scale,
|
128 |
-
num_images_per_prompt=num_samples,
|
129 |
-
generator=generator,
|
130 |
-
).images
|
131 |
-
|
132 |
-
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ootd/inference_ootd_hd.py
DELETED
@@ -1,132 +0,0 @@
|
|
1 |
-
import pdb
|
2 |
-
from pathlib import Path
|
3 |
-
import sys
|
4 |
-
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
|
5 |
-
sys.path.insert(0, str(PROJECT_ROOT))
|
6 |
-
import os
|
7 |
-
import torch
|
8 |
-
import numpy as np
|
9 |
-
from PIL import Image
|
10 |
-
import cv2
|
11 |
-
|
12 |
-
import random
|
13 |
-
import time
|
14 |
-
import pdb
|
15 |
-
|
16 |
-
from pipelines_ootd.pipeline_ootd import OotdPipeline
|
17 |
-
from pipelines_ootd.unet_garm_2d_condition import UNetGarm2DConditionModel
|
18 |
-
from pipelines_ootd.unet_vton_2d_condition import UNetVton2DConditionModel
|
19 |
-
from diffusers import UniPCMultistepScheduler
|
20 |
-
from diffusers import AutoencoderKL
|
21 |
-
|
22 |
-
import torch.nn as nn
|
23 |
-
import torch.nn.functional as F
|
24 |
-
from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
25 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
26 |
-
|
27 |
-
VIT_PATH = "openai/clip-vit-large-patch14"
|
28 |
-
VAE_PATH = "levihsu/ootd"
|
29 |
-
UNET_PATH = "levihsu/ootd"
|
30 |
-
MODEL_PATH = "levihsu/ootd"
|
31 |
-
|
32 |
-
class OOTDiffusionHD:
|
33 |
-
|
34 |
-
def __init__(self, gpu_id):
|
35 |
-
self.gpu_id = 'cuda:' + str(gpu_id)
|
36 |
-
|
37 |
-
vae = AutoencoderKL.from_pretrained(
|
38 |
-
VAE_PATH,
|
39 |
-
subfolder="vae",
|
40 |
-
torch_dtype=torch.float16,
|
41 |
-
)
|
42 |
-
|
43 |
-
unet_garm = UNetGarm2DConditionModel.from_pretrained(
|
44 |
-
UNET_PATH,
|
45 |
-
subfolder="ootd_hd/checkpoint-36000/unet_garm",
|
46 |
-
torch_dtype=torch.float16,
|
47 |
-
use_safetensors=True,
|
48 |
-
)
|
49 |
-
unet_vton = UNetVton2DConditionModel.from_pretrained(
|
50 |
-
UNET_PATH,
|
51 |
-
subfolder="ootd_hd/checkpoint-36000/unet_vton",
|
52 |
-
torch_dtype=torch.float16,
|
53 |
-
use_safetensors=True,
|
54 |
-
)
|
55 |
-
|
56 |
-
self.pipe = OotdPipeline.from_pretrained(
|
57 |
-
MODEL_PATH,
|
58 |
-
vae=vae,
|
59 |
-
unet_garm=unet_garm,
|
60 |
-
unet_vton=unet_vton,
|
61 |
-
torch_dtype=torch.float16,
|
62 |
-
variant="fp16",
|
63 |
-
use_safetensors=True,
|
64 |
-
safety_checker=None,
|
65 |
-
requires_safety_checker=False,
|
66 |
-
).to(self.gpu_id)
|
67 |
-
|
68 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
69 |
-
|
70 |
-
self.auto_processor = AutoProcessor.from_pretrained(VIT_PATH)
|
71 |
-
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(VIT_PATH).to(self.gpu_id)
|
72 |
-
|
73 |
-
self.tokenizer = CLIPTokenizer.from_pretrained(
|
74 |
-
MODEL_PATH,
|
75 |
-
subfolder="tokenizer",
|
76 |
-
)
|
77 |
-
self.text_encoder = CLIPTextModel.from_pretrained(
|
78 |
-
MODEL_PATH,
|
79 |
-
subfolder="text_encoder",
|
80 |
-
).to(self.gpu_id)
|
81 |
-
|
82 |
-
|
83 |
-
def tokenize_captions(self, captions, max_length):
|
84 |
-
inputs = self.tokenizer(
|
85 |
-
captions, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
|
86 |
-
)
|
87 |
-
return inputs.input_ids
|
88 |
-
|
89 |
-
|
90 |
-
def __call__(self,
|
91 |
-
model_type='hd',
|
92 |
-
category='upperbody',
|
93 |
-
image_garm=None,
|
94 |
-
image_vton=None,
|
95 |
-
mask=None,
|
96 |
-
image_ori=None,
|
97 |
-
num_samples=1,
|
98 |
-
num_steps=20,
|
99 |
-
image_scale=1.0,
|
100 |
-
seed=-1,
|
101 |
-
):
|
102 |
-
if seed == -1:
|
103 |
-
random.seed(time.time())
|
104 |
-
seed = random.randint(0, 2147483647)
|
105 |
-
print('Initial seed: ' + str(seed))
|
106 |
-
generator = torch.manual_seed(seed)
|
107 |
-
|
108 |
-
with torch.no_grad():
|
109 |
-
prompt_image = self.auto_processor(images=image_garm, return_tensors="pt").to(self.gpu_id)
|
110 |
-
prompt_image = self.image_encoder(prompt_image.data['pixel_values']).image_embeds
|
111 |
-
prompt_image = prompt_image.unsqueeze(1)
|
112 |
-
if model_type == 'hd':
|
113 |
-
prompt_embeds = self.text_encoder(self.tokenize_captions([""], 2).to(self.gpu_id))[0]
|
114 |
-
prompt_embeds[:, 1:] = prompt_image[:]
|
115 |
-
elif model_type == 'dc':
|
116 |
-
prompt_embeds = self.text_encoder(self.tokenize_captions([category], 3).to(self.gpu_id))[0]
|
117 |
-
prompt_embeds = torch.cat([prompt_embeds, prompt_image], dim=1)
|
118 |
-
else:
|
119 |
-
raise ValueError("model_type must be \'hd\' or \'dc\'!")
|
120 |
-
|
121 |
-
images = self.pipe(prompt_embeds=prompt_embeds,
|
122 |
-
image_garm=image_garm,
|
123 |
-
image_vton=image_vton,
|
124 |
-
mask=mask,
|
125 |
-
image_ori=image_ori,
|
126 |
-
num_inference_steps=num_steps,
|
127 |
-
image_guidance_scale=image_scale,
|
128 |
-
num_images_per_prompt=num_samples,
|
129 |
-
generator=generator,
|
130 |
-
).images
|
131 |
-
|
132 |
-
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ootd/pipelines_ootd/attention_garm.py
DELETED
@@ -1,402 +0,0 @@
|
|
1 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
-
from typing import Any, Dict, Optional
|
17 |
-
|
18 |
-
import torch
|
19 |
-
from torch import nn
|
20 |
-
|
21 |
-
from diffusers.utils import USE_PEFT_BACKEND
|
22 |
-
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
23 |
-
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
24 |
-
from diffusers.models.attention_processor import Attention
|
25 |
-
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
26 |
-
from diffusers.models.lora import LoRACompatibleLinear
|
27 |
-
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero
|
28 |
-
|
29 |
-
|
30 |
-
@maybe_allow_in_graph
|
31 |
-
class GatedSelfAttentionDense(nn.Module):
|
32 |
-
r"""
|
33 |
-
A gated self-attention dense layer that combines visual features and object features.
|
34 |
-
|
35 |
-
Parameters:
|
36 |
-
query_dim (`int`): The number of channels in the query.
|
37 |
-
context_dim (`int`): The number of channels in the context.
|
38 |
-
n_heads (`int`): The number of heads to use for attention.
|
39 |
-
d_head (`int`): The number of channels in each head.
|
40 |
-
"""
|
41 |
-
|
42 |
-
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
43 |
-
super().__init__()
|
44 |
-
|
45 |
-
# we need a linear projection since we need cat visual feature and obj feature
|
46 |
-
self.linear = nn.Linear(context_dim, query_dim)
|
47 |
-
|
48 |
-
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
49 |
-
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
50 |
-
|
51 |
-
self.norm1 = nn.LayerNorm(query_dim)
|
52 |
-
self.norm2 = nn.LayerNorm(query_dim)
|
53 |
-
|
54 |
-
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
55 |
-
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
56 |
-
|
57 |
-
self.enabled = True
|
58 |
-
|
59 |
-
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
60 |
-
if not self.enabled:
|
61 |
-
return x
|
62 |
-
|
63 |
-
n_visual = x.shape[1]
|
64 |
-
objs = self.linear(objs)
|
65 |
-
|
66 |
-
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
67 |
-
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
68 |
-
|
69 |
-
return x
|
70 |
-
|
71 |
-
|
72 |
-
@maybe_allow_in_graph
|
73 |
-
class BasicTransformerBlock(nn.Module):
|
74 |
-
r"""
|
75 |
-
A basic Transformer block.
|
76 |
-
|
77 |
-
Parameters:
|
78 |
-
dim (`int`): The number of channels in the input and output.
|
79 |
-
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
80 |
-
attention_head_dim (`int`): The number of channels in each head.
|
81 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
82 |
-
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
83 |
-
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
84 |
-
num_embeds_ada_norm (:
|
85 |
-
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
86 |
-
attention_bias (:
|
87 |
-
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
88 |
-
only_cross_attention (`bool`, *optional*):
|
89 |
-
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
90 |
-
double_self_attention (`bool`, *optional*):
|
91 |
-
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
92 |
-
upcast_attention (`bool`, *optional*):
|
93 |
-
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
94 |
-
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
95 |
-
Whether to use learnable elementwise affine parameters for normalization.
|
96 |
-
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
97 |
-
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
98 |
-
final_dropout (`bool` *optional*, defaults to False):
|
99 |
-
Whether to apply a final dropout after the last feed-forward layer.
|
100 |
-
attention_type (`str`, *optional*, defaults to `"default"`):
|
101 |
-
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
102 |
-
positional_embeddings (`str`, *optional*, defaults to `None`):
|
103 |
-
The type of positional embeddings to apply to.
|
104 |
-
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
105 |
-
The maximum number of positional embeddings to apply.
|
106 |
-
"""
|
107 |
-
|
108 |
-
def __init__(
|
109 |
-
self,
|
110 |
-
dim: int,
|
111 |
-
num_attention_heads: int,
|
112 |
-
attention_head_dim: int,
|
113 |
-
dropout=0.0,
|
114 |
-
cross_attention_dim: Optional[int] = None,
|
115 |
-
activation_fn: str = "geglu",
|
116 |
-
num_embeds_ada_norm: Optional[int] = None,
|
117 |
-
attention_bias: bool = False,
|
118 |
-
only_cross_attention: bool = False,
|
119 |
-
double_self_attention: bool = False,
|
120 |
-
upcast_attention: bool = False,
|
121 |
-
norm_elementwise_affine: bool = True,
|
122 |
-
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
123 |
-
norm_eps: float = 1e-5,
|
124 |
-
final_dropout: bool = False,
|
125 |
-
attention_type: str = "default",
|
126 |
-
positional_embeddings: Optional[str] = None,
|
127 |
-
num_positional_embeddings: Optional[int] = None,
|
128 |
-
):
|
129 |
-
super().__init__()
|
130 |
-
self.only_cross_attention = only_cross_attention
|
131 |
-
|
132 |
-
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
133 |
-
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
134 |
-
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
135 |
-
self.use_layer_norm = norm_type == "layer_norm"
|
136 |
-
|
137 |
-
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
138 |
-
raise ValueError(
|
139 |
-
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
140 |
-
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
141 |
-
)
|
142 |
-
|
143 |
-
if positional_embeddings and (num_positional_embeddings is None):
|
144 |
-
raise ValueError(
|
145 |
-
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
146 |
-
)
|
147 |
-
|
148 |
-
if positional_embeddings == "sinusoidal":
|
149 |
-
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
150 |
-
else:
|
151 |
-
self.pos_embed = None
|
152 |
-
|
153 |
-
# Define 3 blocks. Each block has its own normalization layer.
|
154 |
-
# 1. Self-Attn
|
155 |
-
if self.use_ada_layer_norm:
|
156 |
-
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
157 |
-
elif self.use_ada_layer_norm_zero:
|
158 |
-
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
159 |
-
else:
|
160 |
-
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
161 |
-
|
162 |
-
self.attn1 = Attention(
|
163 |
-
query_dim=dim,
|
164 |
-
heads=num_attention_heads,
|
165 |
-
dim_head=attention_head_dim,
|
166 |
-
dropout=dropout,
|
167 |
-
bias=attention_bias,
|
168 |
-
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
169 |
-
upcast_attention=upcast_attention,
|
170 |
-
)
|
171 |
-
|
172 |
-
# 2. Cross-Attn
|
173 |
-
if cross_attention_dim is not None or double_self_attention:
|
174 |
-
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
175 |
-
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
176 |
-
# the second cross attention block.
|
177 |
-
self.norm2 = (
|
178 |
-
AdaLayerNorm(dim, num_embeds_ada_norm)
|
179 |
-
if self.use_ada_layer_norm
|
180 |
-
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
181 |
-
)
|
182 |
-
self.attn2 = Attention(
|
183 |
-
query_dim=dim,
|
184 |
-
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
185 |
-
heads=num_attention_heads,
|
186 |
-
dim_head=attention_head_dim,
|
187 |
-
dropout=dropout,
|
188 |
-
bias=attention_bias,
|
189 |
-
upcast_attention=upcast_attention,
|
190 |
-
) # is self-attn if encoder_hidden_states is none
|
191 |
-
else:
|
192 |
-
self.norm2 = None
|
193 |
-
self.attn2 = None
|
194 |
-
|
195 |
-
# 3. Feed-forward
|
196 |
-
if not self.use_ada_layer_norm_single:
|
197 |
-
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
198 |
-
|
199 |
-
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
200 |
-
|
201 |
-
# 4. Fuser
|
202 |
-
if attention_type == "gated" or attention_type == "gated-text-image":
|
203 |
-
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
204 |
-
|
205 |
-
# 5. Scale-shift for PixArt-Alpha.
|
206 |
-
if self.use_ada_layer_norm_single:
|
207 |
-
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
208 |
-
|
209 |
-
# let chunk size default to None
|
210 |
-
self._chunk_size = None
|
211 |
-
self._chunk_dim = 0
|
212 |
-
|
213 |
-
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
214 |
-
# Sets chunk feed-forward
|
215 |
-
self._chunk_size = chunk_size
|
216 |
-
self._chunk_dim = dim
|
217 |
-
|
218 |
-
def forward(
|
219 |
-
self,
|
220 |
-
hidden_states: torch.FloatTensor,
|
221 |
-
spatial_attn_inputs = [],
|
222 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
223 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
224 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
225 |
-
timestep: Optional[torch.LongTensor] = None,
|
226 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
227 |
-
class_labels: Optional[torch.LongTensor] = None,
|
228 |
-
) -> torch.FloatTensor:
|
229 |
-
# Notice that normalization is always applied before the real computation in the following blocks.
|
230 |
-
# 0. Self-Attention
|
231 |
-
batch_size = hidden_states.shape[0]
|
232 |
-
|
233 |
-
spatial_attn_input = hidden_states
|
234 |
-
spatial_attn_inputs.append(spatial_attn_input)
|
235 |
-
|
236 |
-
if self.use_ada_layer_norm:
|
237 |
-
norm_hidden_states = self.norm1(hidden_states, timestep)
|
238 |
-
elif self.use_ada_layer_norm_zero:
|
239 |
-
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
240 |
-
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
241 |
-
)
|
242 |
-
elif self.use_layer_norm:
|
243 |
-
norm_hidden_states = self.norm1(hidden_states)
|
244 |
-
elif self.use_ada_layer_norm_single:
|
245 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
246 |
-
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
247 |
-
).chunk(6, dim=1)
|
248 |
-
norm_hidden_states = self.norm1(hidden_states)
|
249 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
250 |
-
norm_hidden_states = norm_hidden_states.squeeze(1)
|
251 |
-
else:
|
252 |
-
raise ValueError("Incorrect norm used")
|
253 |
-
|
254 |
-
if self.pos_embed is not None:
|
255 |
-
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
256 |
-
|
257 |
-
# 1. Retrieve lora scale.
|
258 |
-
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
259 |
-
|
260 |
-
# 2. Prepare GLIGEN inputs
|
261 |
-
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
262 |
-
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
263 |
-
|
264 |
-
attn_output = self.attn1(
|
265 |
-
norm_hidden_states,
|
266 |
-
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
267 |
-
attention_mask=attention_mask,
|
268 |
-
**cross_attention_kwargs,
|
269 |
-
)
|
270 |
-
if self.use_ada_layer_norm_zero:
|
271 |
-
attn_output = gate_msa.unsqueeze(1) * attn_output
|
272 |
-
elif self.use_ada_layer_norm_single:
|
273 |
-
attn_output = gate_msa * attn_output
|
274 |
-
|
275 |
-
hidden_states = attn_output + hidden_states
|
276 |
-
if hidden_states.ndim == 4:
|
277 |
-
hidden_states = hidden_states.squeeze(1)
|
278 |
-
|
279 |
-
# 2.5 GLIGEN Control
|
280 |
-
if gligen_kwargs is not None:
|
281 |
-
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
282 |
-
|
283 |
-
# 3. Cross-Attention
|
284 |
-
if self.attn2 is not None:
|
285 |
-
if self.use_ada_layer_norm:
|
286 |
-
norm_hidden_states = self.norm2(hidden_states, timestep)
|
287 |
-
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
288 |
-
norm_hidden_states = self.norm2(hidden_states)
|
289 |
-
elif self.use_ada_layer_norm_single:
|
290 |
-
# For PixArt norm2 isn't applied here:
|
291 |
-
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
292 |
-
norm_hidden_states = hidden_states
|
293 |
-
else:
|
294 |
-
raise ValueError("Incorrect norm")
|
295 |
-
|
296 |
-
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
297 |
-
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
298 |
-
|
299 |
-
attn_output = self.attn2(
|
300 |
-
norm_hidden_states,
|
301 |
-
encoder_hidden_states=encoder_hidden_states,
|
302 |
-
attention_mask=encoder_attention_mask,
|
303 |
-
**cross_attention_kwargs,
|
304 |
-
)
|
305 |
-
hidden_states = attn_output + hidden_states
|
306 |
-
|
307 |
-
# 4. Feed-forward
|
308 |
-
if not self.use_ada_layer_norm_single:
|
309 |
-
norm_hidden_states = self.norm3(hidden_states)
|
310 |
-
|
311 |
-
if self.use_ada_layer_norm_zero:
|
312 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
313 |
-
|
314 |
-
if self.use_ada_layer_norm_single:
|
315 |
-
norm_hidden_states = self.norm2(hidden_states)
|
316 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
317 |
-
|
318 |
-
if self._chunk_size is not None:
|
319 |
-
# "feed_forward_chunk_size" can be used to save memory
|
320 |
-
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
321 |
-
raise ValueError(
|
322 |
-
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
323 |
-
)
|
324 |
-
|
325 |
-
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
326 |
-
ff_output = torch.cat(
|
327 |
-
[
|
328 |
-
self.ff(hid_slice, scale=lora_scale)
|
329 |
-
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
|
330 |
-
],
|
331 |
-
dim=self._chunk_dim,
|
332 |
-
)
|
333 |
-
else:
|
334 |
-
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
335 |
-
|
336 |
-
if self.use_ada_layer_norm_zero:
|
337 |
-
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
338 |
-
elif self.use_ada_layer_norm_single:
|
339 |
-
ff_output = gate_mlp * ff_output
|
340 |
-
|
341 |
-
hidden_states = ff_output + hidden_states
|
342 |
-
if hidden_states.ndim == 4:
|
343 |
-
hidden_states = hidden_states.squeeze(1)
|
344 |
-
|
345 |
-
return hidden_states, spatial_attn_inputs
|
346 |
-
|
347 |
-
|
348 |
-
class FeedForward(nn.Module):
|
349 |
-
r"""
|
350 |
-
A feed-forward layer.
|
351 |
-
|
352 |
-
Parameters:
|
353 |
-
dim (`int`): The number of channels in the input.
|
354 |
-
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
355 |
-
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
356 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
357 |
-
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
358 |
-
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
359 |
-
"""
|
360 |
-
|
361 |
-
def __init__(
|
362 |
-
self,
|
363 |
-
dim: int,
|
364 |
-
dim_out: Optional[int] = None,
|
365 |
-
mult: int = 4,
|
366 |
-
dropout: float = 0.0,
|
367 |
-
activation_fn: str = "geglu",
|
368 |
-
final_dropout: bool = False,
|
369 |
-
):
|
370 |
-
super().__init__()
|
371 |
-
inner_dim = int(dim * mult)
|
372 |
-
dim_out = dim_out if dim_out is not None else dim
|
373 |
-
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
|
374 |
-
|
375 |
-
if activation_fn == "gelu":
|
376 |
-
act_fn = GELU(dim, inner_dim)
|
377 |
-
if activation_fn == "gelu-approximate":
|
378 |
-
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
379 |
-
elif activation_fn == "geglu":
|
380 |
-
act_fn = GEGLU(dim, inner_dim)
|
381 |
-
elif activation_fn == "geglu-approximate":
|
382 |
-
act_fn = ApproximateGELU(dim, inner_dim)
|
383 |
-
|
384 |
-
self.net = nn.ModuleList([])
|
385 |
-
# project in
|
386 |
-
self.net.append(act_fn)
|
387 |
-
# project dropout
|
388 |
-
self.net.append(nn.Dropout(dropout))
|
389 |
-
# project out
|
390 |
-
self.net.append(linear_cls(inner_dim, dim_out))
|
391 |
-
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
392 |
-
if final_dropout:
|
393 |
-
self.net.append(nn.Dropout(dropout))
|
394 |
-
|
395 |
-
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
|
396 |
-
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
|
397 |
-
for module in self.net:
|
398 |
-
if isinstance(module, compatible_cls):
|
399 |
-
hidden_states = module(hidden_states, scale)
|
400 |
-
else:
|
401 |
-
hidden_states = module(hidden_states)
|
402 |
-
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ootd/pipelines_ootd/attention_vton.py
DELETED
@@ -1,407 +0,0 @@
|
|
1 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
-
from typing import Any, Dict, Optional
|
17 |
-
|
18 |
-
import torch
|
19 |
-
from torch import nn
|
20 |
-
|
21 |
-
from diffusers.utils import USE_PEFT_BACKEND
|
22 |
-
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
23 |
-
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
24 |
-
from diffusers.models.attention_processor import Attention
|
25 |
-
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
26 |
-
from diffusers.models.lora import LoRACompatibleLinear
|
27 |
-
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero
|
28 |
-
|
29 |
-
|
30 |
-
@maybe_allow_in_graph
|
31 |
-
class GatedSelfAttentionDense(nn.Module):
|
32 |
-
r"""
|
33 |
-
A gated self-attention dense layer that combines visual features and object features.
|
34 |
-
|
35 |
-
Parameters:
|
36 |
-
query_dim (`int`): The number of channels in the query.
|
37 |
-
context_dim (`int`): The number of channels in the context.
|
38 |
-
n_heads (`int`): The number of heads to use for attention.
|
39 |
-
d_head (`int`): The number of channels in each head.
|
40 |
-
"""
|
41 |
-
|
42 |
-
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
43 |
-
super().__init__()
|
44 |
-
|
45 |
-
# we need a linear projection since we need cat visual feature and obj feature
|
46 |
-
self.linear = nn.Linear(context_dim, query_dim)
|
47 |
-
|
48 |
-
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
49 |
-
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
50 |
-
|
51 |
-
self.norm1 = nn.LayerNorm(query_dim)
|
52 |
-
self.norm2 = nn.LayerNorm(query_dim)
|
53 |
-
|
54 |
-
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
55 |
-
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
56 |
-
|
57 |
-
self.enabled = True
|
58 |
-
|
59 |
-
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
60 |
-
if not self.enabled:
|
61 |
-
return x
|
62 |
-
|
63 |
-
n_visual = x.shape[1]
|
64 |
-
objs = self.linear(objs)
|
65 |
-
|
66 |
-
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
67 |
-
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
68 |
-
|
69 |
-
return x
|
70 |
-
|
71 |
-
|
72 |
-
@maybe_allow_in_graph
|
73 |
-
class BasicTransformerBlock(nn.Module):
|
74 |
-
r"""
|
75 |
-
A basic Transformer block.
|
76 |
-
|
77 |
-
Parameters:
|
78 |
-
dim (`int`): The number of channels in the input and output.
|
79 |
-
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
80 |
-
attention_head_dim (`int`): The number of channels in each head.
|
81 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
82 |
-
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
83 |
-
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
84 |
-
num_embeds_ada_norm (:
|
85 |
-
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
86 |
-
attention_bias (:
|
87 |
-
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
88 |
-
only_cross_attention (`bool`, *optional*):
|
89 |
-
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
90 |
-
double_self_attention (`bool`, *optional*):
|
91 |
-
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
92 |
-
upcast_attention (`bool`, *optional*):
|
93 |
-
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
94 |
-
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
95 |
-
Whether to use learnable elementwise affine parameters for normalization.
|
96 |
-
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
97 |
-
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
98 |
-
final_dropout (`bool` *optional*, defaults to False):
|
99 |
-
Whether to apply a final dropout after the last feed-forward layer.
|
100 |
-
attention_type (`str`, *optional*, defaults to `"default"`):
|
101 |
-
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
102 |
-
positional_embeddings (`str`, *optional*, defaults to `None`):
|
103 |
-
The type of positional embeddings to apply to.
|
104 |
-
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
105 |
-
The maximum number of positional embeddings to apply.
|
106 |
-
"""
|
107 |
-
|
108 |
-
def __init__(
|
109 |
-
self,
|
110 |
-
dim: int,
|
111 |
-
num_attention_heads: int,
|
112 |
-
attention_head_dim: int,
|
113 |
-
dropout=0.0,
|
114 |
-
cross_attention_dim: Optional[int] = None,
|
115 |
-
activation_fn: str = "geglu",
|
116 |
-
num_embeds_ada_norm: Optional[int] = None,
|
117 |
-
attention_bias: bool = False,
|
118 |
-
only_cross_attention: bool = False,
|
119 |
-
double_self_attention: bool = False,
|
120 |
-
upcast_attention: bool = False,
|
121 |
-
norm_elementwise_affine: bool = True,
|
122 |
-
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
123 |
-
norm_eps: float = 1e-5,
|
124 |
-
final_dropout: bool = False,
|
125 |
-
attention_type: str = "default",
|
126 |
-
positional_embeddings: Optional[str] = None,
|
127 |
-
num_positional_embeddings: Optional[int] = None,
|
128 |
-
):
|
129 |
-
super().__init__()
|
130 |
-
self.only_cross_attention = only_cross_attention
|
131 |
-
|
132 |
-
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
133 |
-
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
134 |
-
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
135 |
-
self.use_layer_norm = norm_type == "layer_norm"
|
136 |
-
|
137 |
-
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
138 |
-
raise ValueError(
|
139 |
-
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
140 |
-
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
141 |
-
)
|
142 |
-
|
143 |
-
if positional_embeddings and (num_positional_embeddings is None):
|
144 |
-
raise ValueError(
|
145 |
-
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
146 |
-
)
|
147 |
-
|
148 |
-
if positional_embeddings == "sinusoidal":
|
149 |
-
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
150 |
-
else:
|
151 |
-
self.pos_embed = None
|
152 |
-
|
153 |
-
# Define 3 blocks. Each block has its own normalization layer.
|
154 |
-
# 1. Self-Attn
|
155 |
-
if self.use_ada_layer_norm:
|
156 |
-
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
157 |
-
elif self.use_ada_layer_norm_zero:
|
158 |
-
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
159 |
-
else:
|
160 |
-
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
161 |
-
|
162 |
-
self.attn1 = Attention(
|
163 |
-
query_dim=dim,
|
164 |
-
heads=num_attention_heads,
|
165 |
-
dim_head=attention_head_dim,
|
166 |
-
dropout=dropout,
|
167 |
-
bias=attention_bias,
|
168 |
-
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
169 |
-
upcast_attention=upcast_attention,
|
170 |
-
)
|
171 |
-
|
172 |
-
# 2. Cross-Attn
|
173 |
-
if cross_attention_dim is not None or double_self_attention:
|
174 |
-
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
175 |
-
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
176 |
-
# the second cross attention block.
|
177 |
-
self.norm2 = (
|
178 |
-
AdaLayerNorm(dim, num_embeds_ada_norm)
|
179 |
-
if self.use_ada_layer_norm
|
180 |
-
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
181 |
-
)
|
182 |
-
self.attn2 = Attention(
|
183 |
-
query_dim=dim,
|
184 |
-
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
185 |
-
heads=num_attention_heads,
|
186 |
-
dim_head=attention_head_dim,
|
187 |
-
dropout=dropout,
|
188 |
-
bias=attention_bias,
|
189 |
-
upcast_attention=upcast_attention,
|
190 |
-
) # is self-attn if encoder_hidden_states is none
|
191 |
-
else:
|
192 |
-
self.norm2 = None
|
193 |
-
self.attn2 = None
|
194 |
-
|
195 |
-
# 3. Feed-forward
|
196 |
-
if not self.use_ada_layer_norm_single:
|
197 |
-
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
198 |
-
|
199 |
-
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
200 |
-
|
201 |
-
# 4. Fuser
|
202 |
-
if attention_type == "gated" or attention_type == "gated-text-image":
|
203 |
-
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
204 |
-
|
205 |
-
# 5. Scale-shift for PixArt-Alpha.
|
206 |
-
if self.use_ada_layer_norm_single:
|
207 |
-
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
208 |
-
|
209 |
-
# let chunk size default to None
|
210 |
-
self._chunk_size = None
|
211 |
-
self._chunk_dim = 0
|
212 |
-
|
213 |
-
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
214 |
-
# Sets chunk feed-forward
|
215 |
-
self._chunk_size = chunk_size
|
216 |
-
self._chunk_dim = dim
|
217 |
-
|
218 |
-
def forward(
|
219 |
-
self,
|
220 |
-
hidden_states: torch.FloatTensor,
|
221 |
-
spatial_attn_inputs = [],
|
222 |
-
spatial_attn_idx = 0,
|
223 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
224 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
225 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
226 |
-
timestep: Optional[torch.LongTensor] = None,
|
227 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
228 |
-
class_labels: Optional[torch.LongTensor] = None,
|
229 |
-
) -> torch.FloatTensor:
|
230 |
-
# Notice that normalization is always applied before the real computation in the following blocks.
|
231 |
-
# 0. Self-Attention
|
232 |
-
batch_size = hidden_states.shape[0]
|
233 |
-
|
234 |
-
spatial_attn_input = spatial_attn_inputs[spatial_attn_idx]
|
235 |
-
spatial_attn_idx += 1
|
236 |
-
hidden_states = torch.cat((hidden_states, spatial_attn_input), dim=1)
|
237 |
-
|
238 |
-
if self.use_ada_layer_norm:
|
239 |
-
norm_hidden_states = self.norm1(hidden_states, timestep)
|
240 |
-
elif self.use_ada_layer_norm_zero:
|
241 |
-
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
242 |
-
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
243 |
-
)
|
244 |
-
elif self.use_layer_norm:
|
245 |
-
norm_hidden_states = self.norm1(hidden_states)
|
246 |
-
elif self.use_ada_layer_norm_single:
|
247 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
248 |
-
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
249 |
-
).chunk(6, dim=1)
|
250 |
-
norm_hidden_states = self.norm1(hidden_states)
|
251 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
252 |
-
norm_hidden_states = norm_hidden_states.squeeze(1)
|
253 |
-
else:
|
254 |
-
raise ValueError("Incorrect norm used")
|
255 |
-
|
256 |
-
if self.pos_embed is not None:
|
257 |
-
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
258 |
-
|
259 |
-
# 1. Retrieve lora scale.
|
260 |
-
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
261 |
-
|
262 |
-
# 2. Prepare GLIGEN inputs
|
263 |
-
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
264 |
-
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
265 |
-
|
266 |
-
attn_output = self.attn1(
|
267 |
-
norm_hidden_states,
|
268 |
-
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
269 |
-
attention_mask=attention_mask,
|
270 |
-
**cross_attention_kwargs,
|
271 |
-
)
|
272 |
-
if self.use_ada_layer_norm_zero:
|
273 |
-
attn_output = gate_msa.unsqueeze(1) * attn_output
|
274 |
-
elif self.use_ada_layer_norm_single:
|
275 |
-
attn_output = gate_msa * attn_output
|
276 |
-
|
277 |
-
|
278 |
-
hidden_states = attn_output + hidden_states
|
279 |
-
hidden_states, _ = hidden_states.chunk(2, dim=1)
|
280 |
-
|
281 |
-
if hidden_states.ndim == 4:
|
282 |
-
hidden_states = hidden_states.squeeze(1)
|
283 |
-
|
284 |
-
# 2.5 GLIGEN Control
|
285 |
-
if gligen_kwargs is not None:
|
286 |
-
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
287 |
-
|
288 |
-
# 3. Cross-Attention
|
289 |
-
if self.attn2 is not None:
|
290 |
-
if self.use_ada_layer_norm:
|
291 |
-
norm_hidden_states = self.norm2(hidden_states, timestep)
|
292 |
-
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
293 |
-
norm_hidden_states = self.norm2(hidden_states)
|
294 |
-
elif self.use_ada_layer_norm_single:
|
295 |
-
# For PixArt norm2 isn't applied here:
|
296 |
-
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
297 |
-
norm_hidden_states = hidden_states
|
298 |
-
else:
|
299 |
-
raise ValueError("Incorrect norm")
|
300 |
-
|
301 |
-
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
302 |
-
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
303 |
-
|
304 |
-
attn_output = self.attn2(
|
305 |
-
norm_hidden_states,
|
306 |
-
encoder_hidden_states=encoder_hidden_states,
|
307 |
-
attention_mask=encoder_attention_mask,
|
308 |
-
**cross_attention_kwargs,
|
309 |
-
)
|
310 |
-
hidden_states = attn_output + hidden_states
|
311 |
-
|
312 |
-
# 4. Feed-forward
|
313 |
-
if not self.use_ada_layer_norm_single:
|
314 |
-
norm_hidden_states = self.norm3(hidden_states)
|
315 |
-
|
316 |
-
if self.use_ada_layer_norm_zero:
|
317 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
318 |
-
|
319 |
-
if self.use_ada_layer_norm_single:
|
320 |
-
norm_hidden_states = self.norm2(hidden_states)
|
321 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
322 |
-
|
323 |
-
if self._chunk_size is not None:
|
324 |
-
# "feed_forward_chunk_size" can be used to save memory
|
325 |
-
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
326 |
-
raise ValueError(
|
327 |
-
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
328 |
-
)
|
329 |
-
|
330 |
-
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
331 |
-
ff_output = torch.cat(
|
332 |
-
[
|
333 |
-
self.ff(hid_slice, scale=lora_scale)
|
334 |
-
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
|
335 |
-
],
|
336 |
-
dim=self._chunk_dim,
|
337 |
-
)
|
338 |
-
else:
|
339 |
-
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
340 |
-
|
341 |
-
if self.use_ada_layer_norm_zero:
|
342 |
-
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
343 |
-
elif self.use_ada_layer_norm_single:
|
344 |
-
ff_output = gate_mlp * ff_output
|
345 |
-
|
346 |
-
hidden_states = ff_output + hidden_states
|
347 |
-
if hidden_states.ndim == 4:
|
348 |
-
hidden_states = hidden_states.squeeze(1)
|
349 |
-
|
350 |
-
return hidden_states, spatial_attn_inputs, spatial_attn_idx
|
351 |
-
|
352 |
-
|
353 |
-
class FeedForward(nn.Module):
|
354 |
-
r"""
|
355 |
-
A feed-forward layer.
|
356 |
-
|
357 |
-
Parameters:
|
358 |
-
dim (`int`): The number of channels in the input.
|
359 |
-
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
360 |
-
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
361 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
362 |
-
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
363 |
-
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
364 |
-
"""
|
365 |
-
|
366 |
-
def __init__(
|
367 |
-
self,
|
368 |
-
dim: int,
|
369 |
-
dim_out: Optional[int] = None,
|
370 |
-
mult: int = 4,
|
371 |
-
dropout: float = 0.0,
|
372 |
-
activation_fn: str = "geglu",
|
373 |
-
final_dropout: bool = False,
|
374 |
-
):
|
375 |
-
super().__init__()
|
376 |
-
inner_dim = int(dim * mult)
|
377 |
-
dim_out = dim_out if dim_out is not None else dim
|
378 |
-
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
|
379 |
-
|
380 |
-
if activation_fn == "gelu":
|
381 |
-
act_fn = GELU(dim, inner_dim)
|
382 |
-
if activation_fn == "gelu-approximate":
|
383 |
-
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
384 |
-
elif activation_fn == "geglu":
|
385 |
-
act_fn = GEGLU(dim, inner_dim)
|
386 |
-
elif activation_fn == "geglu-approximate":
|
387 |
-
act_fn = ApproximateGELU(dim, inner_dim)
|
388 |
-
|
389 |
-
self.net = nn.ModuleList([])
|
390 |
-
# project in
|
391 |
-
self.net.append(act_fn)
|
392 |
-
# project dropout
|
393 |
-
self.net.append(nn.Dropout(dropout))
|
394 |
-
# project out
|
395 |
-
self.net.append(linear_cls(inner_dim, dim_out))
|
396 |
-
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
397 |
-
if final_dropout:
|
398 |
-
self.net.append(nn.Dropout(dropout))
|
399 |
-
|
400 |
-
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
|
401 |
-
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
|
402 |
-
for module in self.net:
|
403 |
-
if isinstance(module, compatible_cls):
|
404 |
-
hidden_states = module(hidden_states, scale)
|
405 |
-
else:
|
406 |
-
hidden_states = module(hidden_states)
|
407 |
-
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ootd/pipelines_ootd/pipeline_ootd.py
DELETED
@@ -1,846 +0,0 @@
|
|
1 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
-
import inspect
|
17 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
18 |
-
|
19 |
-
import numpy as np
|
20 |
-
import PIL.Image
|
21 |
-
import torch
|
22 |
-
from packaging import version
|
23 |
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
24 |
-
|
25 |
-
from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
26 |
-
|
27 |
-
from .unet_vton_2d_condition import UNetVton2DConditionModel
|
28 |
-
from .unet_garm_2d_condition import UNetGarm2DConditionModel
|
29 |
-
|
30 |
-
from diffusers.configuration_utils import FrozenDict
|
31 |
-
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
32 |
-
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
33 |
-
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
34 |
-
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
35 |
-
from diffusers.schedulers import KarrasDiffusionSchedulers
|
36 |
-
from diffusers.utils import (
|
37 |
-
PIL_INTERPOLATION,
|
38 |
-
USE_PEFT_BACKEND,
|
39 |
-
deprecate,
|
40 |
-
logging,
|
41 |
-
replace_example_docstring,
|
42 |
-
scale_lora_layers,
|
43 |
-
unscale_lora_layers,
|
44 |
-
)
|
45 |
-
from diffusers.utils.torch_utils import randn_tensor
|
46 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
47 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
48 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
49 |
-
|
50 |
-
|
51 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
52 |
-
|
53 |
-
|
54 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
|
55 |
-
def preprocess(image):
|
56 |
-
deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead"
|
57 |
-
deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False)
|
58 |
-
if isinstance(image, torch.Tensor):
|
59 |
-
return image
|
60 |
-
elif isinstance(image, PIL.Image.Image):
|
61 |
-
image = [image]
|
62 |
-
|
63 |
-
if isinstance(image[0], PIL.Image.Image):
|
64 |
-
w, h = image[0].size
|
65 |
-
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
|
66 |
-
|
67 |
-
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
|
68 |
-
image = np.concatenate(image, axis=0)
|
69 |
-
image = np.array(image).astype(np.float32) / 255.0
|
70 |
-
image = image.transpose(0, 3, 1, 2)
|
71 |
-
image = 2.0 * image - 1.0
|
72 |
-
image = torch.from_numpy(image)
|
73 |
-
elif isinstance(image[0], torch.Tensor):
|
74 |
-
image = torch.cat(image, dim=0)
|
75 |
-
return image
|
76 |
-
|
77 |
-
|
78 |
-
class OotdPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
|
79 |
-
r"""
|
80 |
-
Args:
|
81 |
-
vae ([`AutoencoderKL`]):
|
82 |
-
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
83 |
-
text_encoder ([`~transformers.CLIPTextModel`]):
|
84 |
-
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
85 |
-
tokenizer ([`~transformers.CLIPTokenizer`]):
|
86 |
-
A `CLIPTokenizer` to tokenize text.
|
87 |
-
unet ([`UNet2DConditionModel`]):
|
88 |
-
A `UNet2DConditionModel` to denoise the encoded image latents.
|
89 |
-
scheduler ([`SchedulerMixin`]):
|
90 |
-
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
91 |
-
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
92 |
-
safety_checker ([`StableDiffusionSafetyChecker`]):
|
93 |
-
Classification module that estimates whether generated images could be considered offensive or harmful.
|
94 |
-
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
95 |
-
about a model's potential harms.
|
96 |
-
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
97 |
-
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
98 |
-
"""
|
99 |
-
model_cpu_offload_seq = "text_encoder->unet->vae"
|
100 |
-
_optional_components = ["safety_checker", "feature_extractor"]
|
101 |
-
_exclude_from_cpu_offload = ["safety_checker"]
|
102 |
-
_callback_tensor_inputs = ["latents", "prompt_embeds", "vton_latents"]
|
103 |
-
|
104 |
-
def __init__(
|
105 |
-
self,
|
106 |
-
vae: AutoencoderKL,
|
107 |
-
text_encoder: CLIPTextModel,
|
108 |
-
tokenizer: CLIPTokenizer,
|
109 |
-
unet_garm: UNetGarm2DConditionModel,
|
110 |
-
unet_vton: UNetVton2DConditionModel,
|
111 |
-
scheduler: KarrasDiffusionSchedulers,
|
112 |
-
safety_checker: StableDiffusionSafetyChecker,
|
113 |
-
feature_extractor: CLIPImageProcessor,
|
114 |
-
requires_safety_checker: bool = True,
|
115 |
-
):
|
116 |
-
super().__init__()
|
117 |
-
|
118 |
-
if safety_checker is None and requires_safety_checker:
|
119 |
-
logger.warning(
|
120 |
-
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
121 |
-
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
122 |
-
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
123 |
-
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
124 |
-
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
125 |
-
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
126 |
-
)
|
127 |
-
|
128 |
-
if safety_checker is not None and feature_extractor is None:
|
129 |
-
raise ValueError(
|
130 |
-
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
131 |
-
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
132 |
-
)
|
133 |
-
|
134 |
-
self.register_modules(
|
135 |
-
vae=vae,
|
136 |
-
text_encoder=text_encoder,
|
137 |
-
tokenizer=tokenizer,
|
138 |
-
unet_garm=unet_garm,
|
139 |
-
unet_vton=unet_vton,
|
140 |
-
scheduler=scheduler,
|
141 |
-
safety_checker=safety_checker,
|
142 |
-
feature_extractor=feature_extractor,
|
143 |
-
)
|
144 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
145 |
-
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
146 |
-
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
147 |
-
|
148 |
-
@torch.no_grad()
|
149 |
-
def __call__(
|
150 |
-
self,
|
151 |
-
prompt: Union[str, List[str]] = None,
|
152 |
-
image_garm: PipelineImageInput = None,
|
153 |
-
image_vton: PipelineImageInput = None,
|
154 |
-
mask: PipelineImageInput = None,
|
155 |
-
image_ori: PipelineImageInput = None,
|
156 |
-
num_inference_steps: int = 100,
|
157 |
-
guidance_scale: float = 7.5,
|
158 |
-
image_guidance_scale: float = 1.5,
|
159 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
160 |
-
num_images_per_prompt: Optional[int] = 1,
|
161 |
-
eta: float = 0.0,
|
162 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
163 |
-
latents: Optional[torch.FloatTensor] = None,
|
164 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
165 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
166 |
-
output_type: Optional[str] = "pil",
|
167 |
-
return_dict: bool = True,
|
168 |
-
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
169 |
-
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
170 |
-
**kwargs,
|
171 |
-
):
|
172 |
-
r"""
|
173 |
-
The call function to the pipeline for generation.
|
174 |
-
|
175 |
-
Args:
|
176 |
-
prompt (`str` or `List[str]`, *optional*):
|
177 |
-
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
178 |
-
image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
179 |
-
`Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept
|
180 |
-
image latents as `image`, but if passing latents directly it is not encoded again.
|
181 |
-
num_inference_steps (`int`, *optional*, defaults to 100):
|
182 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
183 |
-
expense of slower inference.
|
184 |
-
guidance_scale (`float`, *optional*, defaults to 7.5):
|
185 |
-
A higher guidance scale value encourages the model to generate images closely linked to the text
|
186 |
-
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
187 |
-
image_guidance_scale (`float`, *optional*, defaults to 1.5):
|
188 |
-
Push the generated image towards the initial `image`. Image guidance scale is enabled by setting
|
189 |
-
`image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely
|
190 |
-
linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a
|
191 |
-
value of at least `1`.
|
192 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
193 |
-
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
194 |
-
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
195 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
196 |
-
The number of images to generate per prompt.
|
197 |
-
eta (`float`, *optional*, defaults to 0.0):
|
198 |
-
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
199 |
-
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
200 |
-
generator (`torch.Generator`, *optional*):
|
201 |
-
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
202 |
-
generation deterministic.
|
203 |
-
latents (`torch.FloatTensor`, *optional*):
|
204 |
-
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
205 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
206 |
-
tensor is generated by sampling using the supplied random `generator`.
|
207 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
208 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
209 |
-
provided, text embeddings are generated from the `prompt` input argument.
|
210 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
211 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
212 |
-
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
213 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
214 |
-
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
215 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
216 |
-
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
217 |
-
plain tuple.
|
218 |
-
callback_on_step_end (`Callable`, *optional*):
|
219 |
-
A function that calls at the end of each denoising steps during the inference. The function is called
|
220 |
-
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
221 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
222 |
-
`callback_on_step_end_tensor_inputs`.
|
223 |
-
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
224 |
-
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
225 |
-
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
226 |
-
`._callback_tensor_inputs` attribute of your pipeline class.
|
227 |
-
|
228 |
-
Returns:
|
229 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
230 |
-
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
231 |
-
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
232 |
-
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
233 |
-
"not-safe-for-work" (nsfw) content.
|
234 |
-
"""
|
235 |
-
|
236 |
-
callback = kwargs.pop("callback", None)
|
237 |
-
callback_steps = kwargs.pop("callback_steps", None)
|
238 |
-
|
239 |
-
if callback is not None:
|
240 |
-
deprecate(
|
241 |
-
"callback",
|
242 |
-
"1.0.0",
|
243 |
-
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
244 |
-
)
|
245 |
-
if callback_steps is not None:
|
246 |
-
deprecate(
|
247 |
-
"callback_steps",
|
248 |
-
"1.0.0",
|
249 |
-
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
250 |
-
)
|
251 |
-
|
252 |
-
# 0. Check inputs
|
253 |
-
self.check_inputs(
|
254 |
-
prompt,
|
255 |
-
callback_steps,
|
256 |
-
negative_prompt,
|
257 |
-
prompt_embeds,
|
258 |
-
negative_prompt_embeds,
|
259 |
-
callback_on_step_end_tensor_inputs,
|
260 |
-
)
|
261 |
-
self._guidance_scale = guidance_scale
|
262 |
-
self._image_guidance_scale = image_guidance_scale
|
263 |
-
|
264 |
-
if (image_vton is None) or (image_garm is None):
|
265 |
-
raise ValueError("`image` input cannot be undefined.")
|
266 |
-
|
267 |
-
# 1. Define call parameters
|
268 |
-
if prompt is not None and isinstance(prompt, str):
|
269 |
-
batch_size = 1
|
270 |
-
elif prompt is not None and isinstance(prompt, list):
|
271 |
-
batch_size = len(prompt)
|
272 |
-
else:
|
273 |
-
batch_size = prompt_embeds.shape[0]
|
274 |
-
|
275 |
-
device = self._execution_device
|
276 |
-
# check if scheduler is in sigmas space
|
277 |
-
scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")
|
278 |
-
|
279 |
-
# 2. Encode input prompt
|
280 |
-
prompt_embeds = self._encode_prompt(
|
281 |
-
prompt,
|
282 |
-
device,
|
283 |
-
num_images_per_prompt,
|
284 |
-
self.do_classifier_free_guidance,
|
285 |
-
negative_prompt,
|
286 |
-
prompt_embeds=prompt_embeds,
|
287 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
288 |
-
)
|
289 |
-
|
290 |
-
# 3. Preprocess image
|
291 |
-
image_garm = self.image_processor.preprocess(image_garm)
|
292 |
-
image_vton = self.image_processor.preprocess(image_vton)
|
293 |
-
image_ori = self.image_processor.preprocess(image_ori)
|
294 |
-
mask = np.array(mask)
|
295 |
-
mask[mask < 127] = 0
|
296 |
-
mask[mask >= 127] = 255
|
297 |
-
mask = torch.tensor(mask)
|
298 |
-
mask = mask / 255
|
299 |
-
mask = mask.reshape(-1, 1, mask.size(-2), mask.size(-1))
|
300 |
-
|
301 |
-
# 4. set timesteps
|
302 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
303 |
-
timesteps = self.scheduler.timesteps
|
304 |
-
|
305 |
-
# 5. Prepare Image latents
|
306 |
-
garm_latents = self.prepare_garm_latents(
|
307 |
-
image_garm,
|
308 |
-
batch_size,
|
309 |
-
num_images_per_prompt,
|
310 |
-
prompt_embeds.dtype,
|
311 |
-
device,
|
312 |
-
self.do_classifier_free_guidance,
|
313 |
-
generator,
|
314 |
-
)
|
315 |
-
|
316 |
-
vton_latents, mask_latents, image_ori_latents = self.prepare_vton_latents(
|
317 |
-
image_vton,
|
318 |
-
mask,
|
319 |
-
image_ori,
|
320 |
-
batch_size,
|
321 |
-
num_images_per_prompt,
|
322 |
-
prompt_embeds.dtype,
|
323 |
-
device,
|
324 |
-
self.do_classifier_free_guidance,
|
325 |
-
generator,
|
326 |
-
)
|
327 |
-
|
328 |
-
height, width = vton_latents.shape[-2:]
|
329 |
-
height = height * self.vae_scale_factor
|
330 |
-
width = width * self.vae_scale_factor
|
331 |
-
|
332 |
-
# 6. Prepare latent variables
|
333 |
-
num_channels_latents = self.vae.config.latent_channels
|
334 |
-
latents = self.prepare_latents(
|
335 |
-
batch_size * num_images_per_prompt,
|
336 |
-
num_channels_latents,
|
337 |
-
height,
|
338 |
-
width,
|
339 |
-
prompt_embeds.dtype,
|
340 |
-
device,
|
341 |
-
generator,
|
342 |
-
latents,
|
343 |
-
)
|
344 |
-
|
345 |
-
noise = latents.clone()
|
346 |
-
|
347 |
-
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
348 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
349 |
-
|
350 |
-
# 9. Denoising loop
|
351 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
352 |
-
self._num_timesteps = len(timesteps)
|
353 |
-
|
354 |
-
_, spatial_attn_outputs = self.unet_garm(
|
355 |
-
garm_latents,
|
356 |
-
0,
|
357 |
-
encoder_hidden_states=prompt_embeds,
|
358 |
-
return_dict=False,
|
359 |
-
)
|
360 |
-
|
361 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
362 |
-
for i, t in enumerate(timesteps):
|
363 |
-
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
364 |
-
|
365 |
-
# concat latents, image_latents in the channel dimension
|
366 |
-
scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
367 |
-
latent_vton_model_input = torch.cat([scaled_latent_model_input, vton_latents], dim=1)
|
368 |
-
# latent_vton_model_input = scaled_latent_model_input + vton_latents
|
369 |
-
|
370 |
-
spatial_attn_inputs = spatial_attn_outputs.copy()
|
371 |
-
|
372 |
-
# predict the noise residual
|
373 |
-
noise_pred = self.unet_vton(
|
374 |
-
latent_vton_model_input,
|
375 |
-
spatial_attn_inputs,
|
376 |
-
t,
|
377 |
-
encoder_hidden_states=prompt_embeds,
|
378 |
-
return_dict=False,
|
379 |
-
)[0]
|
380 |
-
|
381 |
-
# Hack:
|
382 |
-
# For karras style schedulers the model does classifer free guidance using the
|
383 |
-
# predicted_original_sample instead of the noise_pred. So we need to compute the
|
384 |
-
# predicted_original_sample here if we are using a karras style scheduler.
|
385 |
-
if scheduler_is_in_sigma_space:
|
386 |
-
step_index = (self.scheduler.timesteps == t).nonzero()[0].item()
|
387 |
-
sigma = self.scheduler.sigmas[step_index]
|
388 |
-
noise_pred = latent_model_input - sigma * noise_pred
|
389 |
-
|
390 |
-
# perform guidance
|
391 |
-
if self.do_classifier_free_guidance:
|
392 |
-
noise_pred_text_image, noise_pred_text = noise_pred.chunk(2)
|
393 |
-
noise_pred = (
|
394 |
-
noise_pred_text
|
395 |
-
+ self.image_guidance_scale * (noise_pred_text_image - noise_pred_text)
|
396 |
-
)
|
397 |
-
|
398 |
-
# Hack:
|
399 |
-
# For karras style schedulers the model does classifer free guidance using the
|
400 |
-
# predicted_original_sample instead of the noise_pred. But the scheduler.step function
|
401 |
-
# expects the noise_pred and computes the predicted_original_sample internally. So we
|
402 |
-
# need to overwrite the noise_pred here such that the value of the computed
|
403 |
-
# predicted_original_sample is correct.
|
404 |
-
if scheduler_is_in_sigma_space:
|
405 |
-
noise_pred = (noise_pred - latents) / (-sigma)
|
406 |
-
|
407 |
-
# compute the previous noisy sample x_t -> x_t-1
|
408 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
409 |
-
|
410 |
-
init_latents_proper = image_ori_latents * self.vae.config.scaling_factor
|
411 |
-
|
412 |
-
# repainting
|
413 |
-
if i < len(timesteps) - 1:
|
414 |
-
noise_timestep = timesteps[i + 1]
|
415 |
-
init_latents_proper = self.scheduler.add_noise(
|
416 |
-
init_latents_proper, noise, torch.tensor([noise_timestep])
|
417 |
-
)
|
418 |
-
|
419 |
-
latents = (1 - mask_latents) * init_latents_proper + mask_latents * latents
|
420 |
-
|
421 |
-
if callback_on_step_end is not None:
|
422 |
-
callback_kwargs = {}
|
423 |
-
for k in callback_on_step_end_tensor_inputs:
|
424 |
-
callback_kwargs[k] = locals()[k]
|
425 |
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
426 |
-
|
427 |
-
latents = callback_outputs.pop("latents", latents)
|
428 |
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
429 |
-
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
430 |
-
vton_latents = callback_outputs.pop("vton_latents", vton_latents)
|
431 |
-
|
432 |
-
# call the callback, if provided
|
433 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
434 |
-
progress_bar.update()
|
435 |
-
if callback is not None and i % callback_steps == 0:
|
436 |
-
step_idx = i // getattr(self.scheduler, "order", 1)
|
437 |
-
callback(step_idx, t, latents)
|
438 |
-
|
439 |
-
if not output_type == "latent":
|
440 |
-
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
441 |
-
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
442 |
-
else:
|
443 |
-
image = latents
|
444 |
-
has_nsfw_concept = None
|
445 |
-
|
446 |
-
if has_nsfw_concept is None:
|
447 |
-
do_denormalize = [True] * image.shape[0]
|
448 |
-
else:
|
449 |
-
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
450 |
-
|
451 |
-
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
452 |
-
|
453 |
-
# Offload all models
|
454 |
-
self.maybe_free_model_hooks()
|
455 |
-
|
456 |
-
if not return_dict:
|
457 |
-
return (image, has_nsfw_concept)
|
458 |
-
|
459 |
-
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
460 |
-
|
461 |
-
def _encode_prompt(
|
462 |
-
self,
|
463 |
-
prompt,
|
464 |
-
device,
|
465 |
-
num_images_per_prompt,
|
466 |
-
do_classifier_free_guidance,
|
467 |
-
negative_prompt=None,
|
468 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
469 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
470 |
-
):
|
471 |
-
r"""
|
472 |
-
Encodes the prompt into text encoder hidden states.
|
473 |
-
|
474 |
-
Args:
|
475 |
-
prompt (`str` or `List[str]`, *optional*):
|
476 |
-
prompt to be encoded
|
477 |
-
device: (`torch.device`):
|
478 |
-
torch device
|
479 |
-
num_images_per_prompt (`int`):
|
480 |
-
number of images that should be generated per prompt
|
481 |
-
do_classifier_free_guidance (`bool`):
|
482 |
-
whether to use classifier free guidance or not
|
483 |
-
negative_ prompt (`str` or `List[str]`, *optional*):
|
484 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
485 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
486 |
-
less than `1`).
|
487 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
488 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
489 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
490 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
491 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
492 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
493 |
-
argument.
|
494 |
-
"""
|
495 |
-
if prompt is not None and isinstance(prompt, str):
|
496 |
-
batch_size = 1
|
497 |
-
elif prompt is not None and isinstance(prompt, list):
|
498 |
-
batch_size = len(prompt)
|
499 |
-
else:
|
500 |
-
batch_size = prompt_embeds.shape[0]
|
501 |
-
|
502 |
-
if prompt_embeds is None:
|
503 |
-
# textual inversion: procecss multi-vector tokens if necessary
|
504 |
-
if isinstance(self, TextualInversionLoaderMixin):
|
505 |
-
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
506 |
-
|
507 |
-
text_inputs = self.tokenizer(
|
508 |
-
prompt,
|
509 |
-
padding="max_length",
|
510 |
-
max_length=self.tokenizer.model_max_length,
|
511 |
-
truncation=True,
|
512 |
-
return_tensors="pt",
|
513 |
-
)
|
514 |
-
text_input_ids = text_inputs.input_ids
|
515 |
-
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
516 |
-
|
517 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
518 |
-
text_input_ids, untruncated_ids
|
519 |
-
):
|
520 |
-
removed_text = self.tokenizer.batch_decode(
|
521 |
-
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
522 |
-
)
|
523 |
-
logger.warning(
|
524 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
525 |
-
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
526 |
-
)
|
527 |
-
|
528 |
-
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
529 |
-
attention_mask = text_inputs.attention_mask.to(device)
|
530 |
-
else:
|
531 |
-
attention_mask = None
|
532 |
-
|
533 |
-
prompt_embeds = self.text_encoder(
|
534 |
-
text_input_ids.to(device),
|
535 |
-
attention_mask=attention_mask,
|
536 |
-
)
|
537 |
-
prompt_embeds = prompt_embeds[0]
|
538 |
-
|
539 |
-
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
540 |
-
|
541 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
542 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
543 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
544 |
-
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
545 |
-
|
546 |
-
# get unconditional embeddings for classifier free guidance
|
547 |
-
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
548 |
-
uncond_tokens: List[str]
|
549 |
-
if negative_prompt is None:
|
550 |
-
uncond_tokens = [""] * batch_size
|
551 |
-
elif type(prompt) is not type(negative_prompt):
|
552 |
-
raise TypeError(
|
553 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
554 |
-
f" {type(prompt)}."
|
555 |
-
)
|
556 |
-
elif isinstance(negative_prompt, str):
|
557 |
-
uncond_tokens = [negative_prompt]
|
558 |
-
elif batch_size != len(negative_prompt):
|
559 |
-
raise ValueError(
|
560 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
561 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
562 |
-
" the batch size of `prompt`."
|
563 |
-
)
|
564 |
-
else:
|
565 |
-
uncond_tokens = negative_prompt
|
566 |
-
|
567 |
-
# textual inversion: procecss multi-vector tokens if necessary
|
568 |
-
if isinstance(self, TextualInversionLoaderMixin):
|
569 |
-
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
570 |
-
|
571 |
-
max_length = prompt_embeds.shape[1]
|
572 |
-
uncond_input = self.tokenizer(
|
573 |
-
uncond_tokens,
|
574 |
-
padding="max_length",
|
575 |
-
max_length=max_length,
|
576 |
-
truncation=True,
|
577 |
-
return_tensors="pt",
|
578 |
-
)
|
579 |
-
|
580 |
-
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
581 |
-
attention_mask = uncond_input.attention_mask.to(device)
|
582 |
-
else:
|
583 |
-
attention_mask = None
|
584 |
-
|
585 |
-
if do_classifier_free_guidance:
|
586 |
-
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds])
|
587 |
-
|
588 |
-
return prompt_embeds
|
589 |
-
|
590 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
591 |
-
def run_safety_checker(self, image, device, dtype):
|
592 |
-
if self.safety_checker is None:
|
593 |
-
has_nsfw_concept = None
|
594 |
-
else:
|
595 |
-
if torch.is_tensor(image):
|
596 |
-
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
597 |
-
else:
|
598 |
-
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
599 |
-
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
600 |
-
image, has_nsfw_concept = self.safety_checker(
|
601 |
-
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
602 |
-
)
|
603 |
-
return image, has_nsfw_concept
|
604 |
-
|
605 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
606 |
-
def prepare_extra_step_kwargs(self, generator, eta):
|
607 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
608 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
609 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
610 |
-
# and should be between [0, 1]
|
611 |
-
|
612 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
613 |
-
extra_step_kwargs = {}
|
614 |
-
if accepts_eta:
|
615 |
-
extra_step_kwargs["eta"] = eta
|
616 |
-
|
617 |
-
# check if the scheduler accepts generator
|
618 |
-
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
619 |
-
if accepts_generator:
|
620 |
-
extra_step_kwargs["generator"] = generator
|
621 |
-
return extra_step_kwargs
|
622 |
-
|
623 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
624 |
-
def decode_latents(self, latents):
|
625 |
-
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
626 |
-
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
627 |
-
|
628 |
-
latents = 1 / self.vae.config.scaling_factor * latents
|
629 |
-
image = self.vae.decode(latents, return_dict=False)[0]
|
630 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
631 |
-
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
632 |
-
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
633 |
-
return image
|
634 |
-
|
635 |
-
def check_inputs(
|
636 |
-
self,
|
637 |
-
prompt,
|
638 |
-
callback_steps,
|
639 |
-
negative_prompt=None,
|
640 |
-
prompt_embeds=None,
|
641 |
-
negative_prompt_embeds=None,
|
642 |
-
callback_on_step_end_tensor_inputs=None,
|
643 |
-
):
|
644 |
-
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
645 |
-
raise ValueError(
|
646 |
-
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
647 |
-
f" {type(callback_steps)}."
|
648 |
-
)
|
649 |
-
|
650 |
-
if callback_on_step_end_tensor_inputs is not None and not all(
|
651 |
-
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
652 |
-
):
|
653 |
-
raise ValueError(
|
654 |
-
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
655 |
-
)
|
656 |
-
|
657 |
-
if prompt is not None and prompt_embeds is not None:
|
658 |
-
raise ValueError(
|
659 |
-
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
660 |
-
" only forward one of the two."
|
661 |
-
)
|
662 |
-
elif prompt is None and prompt_embeds is None:
|
663 |
-
raise ValueError(
|
664 |
-
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
665 |
-
)
|
666 |
-
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
667 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
668 |
-
|
669 |
-
if negative_prompt is not None and negative_prompt_embeds is not None:
|
670 |
-
raise ValueError(
|
671 |
-
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
672 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
673 |
-
)
|
674 |
-
|
675 |
-
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
676 |
-
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
677 |
-
raise ValueError(
|
678 |
-
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
679 |
-
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
680 |
-
f" {negative_prompt_embeds.shape}."
|
681 |
-
)
|
682 |
-
|
683 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
684 |
-
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
685 |
-
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
686 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
687 |
-
raise ValueError(
|
688 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
689 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
690 |
-
)
|
691 |
-
|
692 |
-
if latents is None:
|
693 |
-
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
694 |
-
else:
|
695 |
-
latents = latents.to(device)
|
696 |
-
|
697 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
698 |
-
latents = latents * self.scheduler.init_noise_sigma
|
699 |
-
return latents
|
700 |
-
|
701 |
-
def prepare_garm_latents(
|
702 |
-
self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None
|
703 |
-
):
|
704 |
-
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
705 |
-
raise ValueError(
|
706 |
-
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
707 |
-
)
|
708 |
-
|
709 |
-
image = image.to(device=device, dtype=dtype)
|
710 |
-
|
711 |
-
batch_size = batch_size * num_images_per_prompt
|
712 |
-
|
713 |
-
if image.shape[1] == 4:
|
714 |
-
image_latents = image
|
715 |
-
else:
|
716 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
717 |
-
raise ValueError(
|
718 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
719 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
720 |
-
)
|
721 |
-
|
722 |
-
if isinstance(generator, list):
|
723 |
-
image_latents = [self.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)]
|
724 |
-
image_latents = torch.cat(image_latents, dim=0)
|
725 |
-
else:
|
726 |
-
image_latents = self.vae.encode(image).latent_dist.mode()
|
727 |
-
|
728 |
-
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
729 |
-
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
730 |
-
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
731 |
-
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
732 |
-
raise ValueError(
|
733 |
-
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
734 |
-
)
|
735 |
-
else:
|
736 |
-
image_latents = torch.cat([image_latents], dim=0)
|
737 |
-
|
738 |
-
if do_classifier_free_guidance:
|
739 |
-
uncond_image_latents = torch.zeros_like(image_latents)
|
740 |
-
image_latents = torch.cat([image_latents, uncond_image_latents], dim=0)
|
741 |
-
|
742 |
-
return image_latents
|
743 |
-
|
744 |
-
def prepare_vton_latents(
|
745 |
-
self, image, mask, image_ori, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None
|
746 |
-
):
|
747 |
-
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
748 |
-
raise ValueError(
|
749 |
-
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
750 |
-
)
|
751 |
-
|
752 |
-
image = image.to(device=device, dtype=dtype)
|
753 |
-
image_ori = image_ori.to(device=device, dtype=dtype)
|
754 |
-
|
755 |
-
batch_size = batch_size * num_images_per_prompt
|
756 |
-
|
757 |
-
if image.shape[1] == 4:
|
758 |
-
image_latents = image
|
759 |
-
image_ori_latents = image_ori
|
760 |
-
else:
|
761 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
762 |
-
raise ValueError(
|
763 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
764 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
765 |
-
)
|
766 |
-
|
767 |
-
if isinstance(generator, list):
|
768 |
-
image_latents = [self.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)]
|
769 |
-
image_latents = torch.cat(image_latents, dim=0)
|
770 |
-
image_ori_latents = [self.vae.encode(image_ori[i : i + 1]).latent_dist.mode() for i in range(batch_size)]
|
771 |
-
image_ori_latents = torch.cat(image_ori_latents, dim=0)
|
772 |
-
else:
|
773 |
-
image_latents = self.vae.encode(image).latent_dist.mode()
|
774 |
-
image_ori_latents = self.vae.encode(image_ori).latent_dist.mode()
|
775 |
-
|
776 |
-
mask = torch.nn.functional.interpolate(
|
777 |
-
mask, size=(image_latents.size(-2), image_latents.size(-1))
|
778 |
-
)
|
779 |
-
mask = mask.to(device=device, dtype=dtype)
|
780 |
-
|
781 |
-
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
782 |
-
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
783 |
-
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
784 |
-
mask = torch.cat([mask] * additional_image_per_prompt, dim=0)
|
785 |
-
image_ori_latents = torch.cat([image_ori_latents] * additional_image_per_prompt, dim=0)
|
786 |
-
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
787 |
-
raise ValueError(
|
788 |
-
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
789 |
-
)
|
790 |
-
else:
|
791 |
-
image_latents = torch.cat([image_latents], dim=0)
|
792 |
-
mask = torch.cat([mask], dim=0)
|
793 |
-
image_ori_latents = torch.cat([image_ori_latents], dim=0)
|
794 |
-
|
795 |
-
if do_classifier_free_guidance:
|
796 |
-
# uncond_image_latents = torch.zeros_like(image_latents)
|
797 |
-
image_latents = torch.cat([image_latents] * 2, dim=0)
|
798 |
-
|
799 |
-
return image_latents, mask, image_ori_latents
|
800 |
-
|
801 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
802 |
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
803 |
-
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
804 |
-
|
805 |
-
The suffixes after the scaling factors represent the stages where they are being applied.
|
806 |
-
|
807 |
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
808 |
-
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
809 |
-
|
810 |
-
Args:
|
811 |
-
s1 (`float`):
|
812 |
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
813 |
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
814 |
-
s2 (`float`):
|
815 |
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
816 |
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
817 |
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
818 |
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
819 |
-
"""
|
820 |
-
if not hasattr(self, "unet"):
|
821 |
-
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
822 |
-
self.unet_vton.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
823 |
-
|
824 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
825 |
-
def disable_freeu(self):
|
826 |
-
"""Disables the FreeU mechanism if enabled."""
|
827 |
-
self.unet_vton.disable_freeu()
|
828 |
-
|
829 |
-
@property
|
830 |
-
def guidance_scale(self):
|
831 |
-
return self._guidance_scale
|
832 |
-
|
833 |
-
@property
|
834 |
-
def image_guidance_scale(self):
|
835 |
-
return self._image_guidance_scale
|
836 |
-
|
837 |
-
@property
|
838 |
-
def num_timesteps(self):
|
839 |
-
return self._num_timesteps
|
840 |
-
|
841 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
842 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
843 |
-
# corresponds to doing no classifier free guidance.
|
844 |
-
@property
|
845 |
-
def do_classifier_free_guidance(self):
|
846 |
-
return self.image_guidance_scale >= 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ootd/pipelines_ootd/transformer_garm_2d.py
DELETED
@@ -1,449 +0,0 @@
|
|
1 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
-
from dataclasses import dataclass
|
17 |
-
from typing import Any, Dict, Optional
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn.functional as F
|
21 |
-
from torch import nn
|
22 |
-
|
23 |
-
from .attention_garm import BasicTransformerBlock
|
24 |
-
|
25 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
-
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
27 |
-
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate
|
28 |
-
# from diffusers.models.attention import BasicTransformerBlock
|
29 |
-
from diffusers.models.embeddings import CaptionProjection, PatchEmbed
|
30 |
-
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
31 |
-
from diffusers.models.modeling_utils import ModelMixin
|
32 |
-
from diffusers.models.normalization import AdaLayerNormSingle
|
33 |
-
|
34 |
-
|
35 |
-
@dataclass
|
36 |
-
class Transformer2DModelOutput(BaseOutput):
|
37 |
-
"""
|
38 |
-
The output of [`Transformer2DModel`].
|
39 |
-
|
40 |
-
Args:
|
41 |
-
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
42 |
-
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
43 |
-
distributions for the unnoised latent pixels.
|
44 |
-
"""
|
45 |
-
|
46 |
-
sample: torch.FloatTensor
|
47 |
-
|
48 |
-
|
49 |
-
class Transformer2DModel(ModelMixin, ConfigMixin):
|
50 |
-
"""
|
51 |
-
A 2D Transformer model for image-like data.
|
52 |
-
|
53 |
-
Parameters:
|
54 |
-
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
55 |
-
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
56 |
-
in_channels (`int`, *optional*):
|
57 |
-
The number of channels in the input and output (specify if the input is **continuous**).
|
58 |
-
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
59 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
60 |
-
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
61 |
-
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
62 |
-
This is fixed during training since it is used to learn a number of position embeddings.
|
63 |
-
num_vector_embeds (`int`, *optional*):
|
64 |
-
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
65 |
-
Includes the class for the masked latent pixel.
|
66 |
-
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
67 |
-
num_embeds_ada_norm ( `int`, *optional*):
|
68 |
-
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
69 |
-
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
70 |
-
added to the hidden states.
|
71 |
-
|
72 |
-
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
73 |
-
attention_bias (`bool`, *optional*):
|
74 |
-
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
75 |
-
"""
|
76 |
-
|
77 |
-
@register_to_config
|
78 |
-
def __init__(
|
79 |
-
self,
|
80 |
-
num_attention_heads: int = 16,
|
81 |
-
attention_head_dim: int = 88,
|
82 |
-
in_channels: Optional[int] = None,
|
83 |
-
out_channels: Optional[int] = None,
|
84 |
-
num_layers: int = 1,
|
85 |
-
dropout: float = 0.0,
|
86 |
-
norm_num_groups: int = 32,
|
87 |
-
cross_attention_dim: Optional[int] = None,
|
88 |
-
attention_bias: bool = False,
|
89 |
-
sample_size: Optional[int] = None,
|
90 |
-
num_vector_embeds: Optional[int] = None,
|
91 |
-
patch_size: Optional[int] = None,
|
92 |
-
activation_fn: str = "geglu",
|
93 |
-
num_embeds_ada_norm: Optional[int] = None,
|
94 |
-
use_linear_projection: bool = False,
|
95 |
-
only_cross_attention: bool = False,
|
96 |
-
double_self_attention: bool = False,
|
97 |
-
upcast_attention: bool = False,
|
98 |
-
norm_type: str = "layer_norm",
|
99 |
-
norm_elementwise_affine: bool = True,
|
100 |
-
norm_eps: float = 1e-5,
|
101 |
-
attention_type: str = "default",
|
102 |
-
caption_channels: int = None,
|
103 |
-
):
|
104 |
-
super().__init__()
|
105 |
-
self.use_linear_projection = use_linear_projection
|
106 |
-
self.num_attention_heads = num_attention_heads
|
107 |
-
self.attention_head_dim = attention_head_dim
|
108 |
-
inner_dim = num_attention_heads * attention_head_dim
|
109 |
-
|
110 |
-
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
111 |
-
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
112 |
-
|
113 |
-
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
114 |
-
# Define whether input is continuous or discrete depending on configuration
|
115 |
-
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
116 |
-
self.is_input_vectorized = num_vector_embeds is not None
|
117 |
-
self.is_input_patches = in_channels is not None and patch_size is not None
|
118 |
-
|
119 |
-
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
120 |
-
deprecation_message = (
|
121 |
-
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
122 |
-
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
123 |
-
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
124 |
-
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
125 |
-
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
126 |
-
)
|
127 |
-
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
128 |
-
norm_type = "ada_norm"
|
129 |
-
|
130 |
-
if self.is_input_continuous and self.is_input_vectorized:
|
131 |
-
raise ValueError(
|
132 |
-
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
133 |
-
" sure that either `in_channels` or `num_vector_embeds` is None."
|
134 |
-
)
|
135 |
-
elif self.is_input_vectorized and self.is_input_patches:
|
136 |
-
raise ValueError(
|
137 |
-
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
138 |
-
" sure that either `num_vector_embeds` or `num_patches` is None."
|
139 |
-
)
|
140 |
-
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
141 |
-
raise ValueError(
|
142 |
-
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
143 |
-
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
144 |
-
)
|
145 |
-
|
146 |
-
# 2. Define input layers
|
147 |
-
if self.is_input_continuous:
|
148 |
-
self.in_channels = in_channels
|
149 |
-
|
150 |
-
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
151 |
-
if use_linear_projection:
|
152 |
-
self.proj_in = linear_cls(in_channels, inner_dim)
|
153 |
-
else:
|
154 |
-
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
155 |
-
elif self.is_input_vectorized:
|
156 |
-
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
157 |
-
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
158 |
-
|
159 |
-
self.height = sample_size
|
160 |
-
self.width = sample_size
|
161 |
-
self.num_vector_embeds = num_vector_embeds
|
162 |
-
self.num_latent_pixels = self.height * self.width
|
163 |
-
|
164 |
-
self.latent_image_embedding = ImagePositionalEmbeddings(
|
165 |
-
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
166 |
-
)
|
167 |
-
elif self.is_input_patches:
|
168 |
-
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
169 |
-
|
170 |
-
self.height = sample_size
|
171 |
-
self.width = sample_size
|
172 |
-
|
173 |
-
self.patch_size = patch_size
|
174 |
-
interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
|
175 |
-
interpolation_scale = max(interpolation_scale, 1)
|
176 |
-
self.pos_embed = PatchEmbed(
|
177 |
-
height=sample_size,
|
178 |
-
width=sample_size,
|
179 |
-
patch_size=patch_size,
|
180 |
-
in_channels=in_channels,
|
181 |
-
embed_dim=inner_dim,
|
182 |
-
interpolation_scale=interpolation_scale,
|
183 |
-
)
|
184 |
-
|
185 |
-
# 3. Define transformers blocks
|
186 |
-
self.transformer_blocks = nn.ModuleList(
|
187 |
-
[
|
188 |
-
BasicTransformerBlock(
|
189 |
-
inner_dim,
|
190 |
-
num_attention_heads,
|
191 |
-
attention_head_dim,
|
192 |
-
dropout=dropout,
|
193 |
-
cross_attention_dim=cross_attention_dim,
|
194 |
-
activation_fn=activation_fn,
|
195 |
-
num_embeds_ada_norm=num_embeds_ada_norm,
|
196 |
-
attention_bias=attention_bias,
|
197 |
-
only_cross_attention=only_cross_attention,
|
198 |
-
double_self_attention=double_self_attention,
|
199 |
-
upcast_attention=upcast_attention,
|
200 |
-
norm_type=norm_type,
|
201 |
-
norm_elementwise_affine=norm_elementwise_affine,
|
202 |
-
norm_eps=norm_eps,
|
203 |
-
attention_type=attention_type,
|
204 |
-
)
|
205 |
-
for d in range(num_layers)
|
206 |
-
]
|
207 |
-
)
|
208 |
-
|
209 |
-
# 4. Define output layers
|
210 |
-
self.out_channels = in_channels if out_channels is None else out_channels
|
211 |
-
if self.is_input_continuous:
|
212 |
-
# TODO: should use out_channels for continuous projections
|
213 |
-
if use_linear_projection:
|
214 |
-
self.proj_out = linear_cls(inner_dim, in_channels)
|
215 |
-
else:
|
216 |
-
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
217 |
-
elif self.is_input_vectorized:
|
218 |
-
self.norm_out = nn.LayerNorm(inner_dim)
|
219 |
-
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
220 |
-
elif self.is_input_patches and norm_type != "ada_norm_single":
|
221 |
-
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
222 |
-
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
223 |
-
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
224 |
-
elif self.is_input_patches and norm_type == "ada_norm_single":
|
225 |
-
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
226 |
-
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
227 |
-
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
228 |
-
|
229 |
-
# 5. PixArt-Alpha blocks.
|
230 |
-
self.adaln_single = None
|
231 |
-
self.use_additional_conditions = False
|
232 |
-
if norm_type == "ada_norm_single":
|
233 |
-
self.use_additional_conditions = self.config.sample_size == 128
|
234 |
-
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
235 |
-
# additional conditions until we find better name
|
236 |
-
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
|
237 |
-
|
238 |
-
self.caption_projection = None
|
239 |
-
if caption_channels is not None:
|
240 |
-
self.caption_projection = CaptionProjection(in_features=caption_channels, hidden_size=inner_dim)
|
241 |
-
|
242 |
-
self.gradient_checkpointing = False
|
243 |
-
|
244 |
-
def forward(
|
245 |
-
self,
|
246 |
-
hidden_states: torch.Tensor,
|
247 |
-
spatial_attn_inputs = [],
|
248 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
249 |
-
timestep: Optional[torch.LongTensor] = None,
|
250 |
-
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
251 |
-
class_labels: Optional[torch.LongTensor] = None,
|
252 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
253 |
-
attention_mask: Optional[torch.Tensor] = None,
|
254 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
255 |
-
return_dict: bool = True,
|
256 |
-
):
|
257 |
-
"""
|
258 |
-
The [`Transformer2DModel`] forward method.
|
259 |
-
|
260 |
-
Args:
|
261 |
-
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
262 |
-
Input `hidden_states`.
|
263 |
-
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
264 |
-
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
265 |
-
self-attention.
|
266 |
-
timestep ( `torch.LongTensor`, *optional*):
|
267 |
-
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
268 |
-
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
269 |
-
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
270 |
-
`AdaLayerZeroNorm`.
|
271 |
-
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
272 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
273 |
-
`self.processor` in
|
274 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
275 |
-
attention_mask ( `torch.Tensor`, *optional*):
|
276 |
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
277 |
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
278 |
-
negative values to the attention scores corresponding to "discard" tokens.
|
279 |
-
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
280 |
-
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
281 |
-
|
282 |
-
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
283 |
-
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
284 |
-
|
285 |
-
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
286 |
-
above. This bias will be added to the cross-attention scores.
|
287 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
288 |
-
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
289 |
-
tuple.
|
290 |
-
|
291 |
-
Returns:
|
292 |
-
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
293 |
-
`tuple` where the first element is the sample tensor.
|
294 |
-
"""
|
295 |
-
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
296 |
-
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
297 |
-
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
298 |
-
# expects mask of shape:
|
299 |
-
# [batch, key_tokens]
|
300 |
-
# adds singleton query_tokens dimension:
|
301 |
-
# [batch, 1, key_tokens]
|
302 |
-
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
303 |
-
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
304 |
-
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
305 |
-
if attention_mask is not None and attention_mask.ndim == 2:
|
306 |
-
# assume that mask is expressed as:
|
307 |
-
# (1 = keep, 0 = discard)
|
308 |
-
# convert mask into a bias that can be added to attention scores:
|
309 |
-
# (keep = +0, discard = -10000.0)
|
310 |
-
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
311 |
-
attention_mask = attention_mask.unsqueeze(1)
|
312 |
-
|
313 |
-
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
314 |
-
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
315 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
316 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
317 |
-
|
318 |
-
# Retrieve lora scale.
|
319 |
-
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
320 |
-
|
321 |
-
# 1. Input
|
322 |
-
if self.is_input_continuous:
|
323 |
-
batch, _, height, width = hidden_states.shape
|
324 |
-
residual = hidden_states
|
325 |
-
|
326 |
-
hidden_states = self.norm(hidden_states)
|
327 |
-
if not self.use_linear_projection:
|
328 |
-
hidden_states = (
|
329 |
-
self.proj_in(hidden_states, scale=lora_scale)
|
330 |
-
if not USE_PEFT_BACKEND
|
331 |
-
else self.proj_in(hidden_states)
|
332 |
-
)
|
333 |
-
inner_dim = hidden_states.shape[1]
|
334 |
-
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
335 |
-
else:
|
336 |
-
inner_dim = hidden_states.shape[1]
|
337 |
-
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
338 |
-
hidden_states = (
|
339 |
-
self.proj_in(hidden_states, scale=lora_scale)
|
340 |
-
if not USE_PEFT_BACKEND
|
341 |
-
else self.proj_in(hidden_states)
|
342 |
-
)
|
343 |
-
|
344 |
-
elif self.is_input_vectorized:
|
345 |
-
hidden_states = self.latent_image_embedding(hidden_states)
|
346 |
-
elif self.is_input_patches:
|
347 |
-
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
348 |
-
hidden_states = self.pos_embed(hidden_states)
|
349 |
-
|
350 |
-
if self.adaln_single is not None:
|
351 |
-
if self.use_additional_conditions and added_cond_kwargs is None:
|
352 |
-
raise ValueError(
|
353 |
-
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
354 |
-
)
|
355 |
-
batch_size = hidden_states.shape[0]
|
356 |
-
timestep, embedded_timestep = self.adaln_single(
|
357 |
-
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
358 |
-
)
|
359 |
-
|
360 |
-
# 2. Blocks
|
361 |
-
if self.caption_projection is not None:
|
362 |
-
batch_size = hidden_states.shape[0]
|
363 |
-
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
364 |
-
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
365 |
-
|
366 |
-
for block in self.transformer_blocks:
|
367 |
-
if self.training and self.gradient_checkpointing:
|
368 |
-
hidden_states, spatial_attn_inputs = torch.utils.checkpoint.checkpoint(
|
369 |
-
block,
|
370 |
-
hidden_states,
|
371 |
-
spatial_attn_inputs,
|
372 |
-
attention_mask,
|
373 |
-
encoder_hidden_states,
|
374 |
-
encoder_attention_mask,
|
375 |
-
timestep,
|
376 |
-
cross_attention_kwargs,
|
377 |
-
class_labels,
|
378 |
-
use_reentrant=False,
|
379 |
-
)
|
380 |
-
else:
|
381 |
-
hidden_states, spatial_attn_inputs = block(
|
382 |
-
hidden_states,
|
383 |
-
spatial_attn_inputs,
|
384 |
-
attention_mask=attention_mask,
|
385 |
-
encoder_hidden_states=encoder_hidden_states,
|
386 |
-
encoder_attention_mask=encoder_attention_mask,
|
387 |
-
timestep=timestep,
|
388 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
389 |
-
class_labels=class_labels,
|
390 |
-
)
|
391 |
-
|
392 |
-
# 3. Output
|
393 |
-
if self.is_input_continuous:
|
394 |
-
if not self.use_linear_projection:
|
395 |
-
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
396 |
-
hidden_states = (
|
397 |
-
self.proj_out(hidden_states, scale=lora_scale)
|
398 |
-
if not USE_PEFT_BACKEND
|
399 |
-
else self.proj_out(hidden_states)
|
400 |
-
)
|
401 |
-
else:
|
402 |
-
hidden_states = (
|
403 |
-
self.proj_out(hidden_states, scale=lora_scale)
|
404 |
-
if not USE_PEFT_BACKEND
|
405 |
-
else self.proj_out(hidden_states)
|
406 |
-
)
|
407 |
-
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
408 |
-
|
409 |
-
output = hidden_states + residual
|
410 |
-
elif self.is_input_vectorized:
|
411 |
-
hidden_states = self.norm_out(hidden_states)
|
412 |
-
logits = self.out(hidden_states)
|
413 |
-
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
414 |
-
logits = logits.permute(0, 2, 1)
|
415 |
-
|
416 |
-
# log(p(x_0))
|
417 |
-
output = F.log_softmax(logits.double(), dim=1).float()
|
418 |
-
|
419 |
-
if self.is_input_patches:
|
420 |
-
if self.config.norm_type != "ada_norm_single":
|
421 |
-
conditioning = self.transformer_blocks[0].norm1.emb(
|
422 |
-
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
423 |
-
)
|
424 |
-
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
425 |
-
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
426 |
-
hidden_states = self.proj_out_2(hidden_states)
|
427 |
-
elif self.config.norm_type == "ada_norm_single":
|
428 |
-
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
429 |
-
hidden_states = self.norm_out(hidden_states)
|
430 |
-
# Modulation
|
431 |
-
hidden_states = hidden_states * (1 + scale) + shift
|
432 |
-
hidden_states = self.proj_out(hidden_states)
|
433 |
-
hidden_states = hidden_states.squeeze(1)
|
434 |
-
|
435 |
-
# unpatchify
|
436 |
-
if self.adaln_single is None:
|
437 |
-
height = width = int(hidden_states.shape[1] ** 0.5)
|
438 |
-
hidden_states = hidden_states.reshape(
|
439 |
-
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
440 |
-
)
|
441 |
-
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
442 |
-
output = hidden_states.reshape(
|
443 |
-
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
444 |
-
)
|
445 |
-
|
446 |
-
if not return_dict:
|
447 |
-
return (output,), spatial_attn_inputs
|
448 |
-
|
449 |
-
return Transformer2DModelOutput(sample=output), spatial_attn_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ootd/pipelines_ootd/transformer_vton_2d.py
DELETED
@@ -1,452 +0,0 @@
|
|
1 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
-
from dataclasses import dataclass
|
17 |
-
from typing import Any, Dict, Optional
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn.functional as F
|
21 |
-
from torch import nn
|
22 |
-
|
23 |
-
from .attention_vton import BasicTransformerBlock
|
24 |
-
|
25 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
-
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
27 |
-
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate
|
28 |
-
# from diffusers.models.attention import BasicTransformerBlock
|
29 |
-
from diffusers.models.embeddings import CaptionProjection, PatchEmbed
|
30 |
-
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
31 |
-
from diffusers.models.modeling_utils import ModelMixin
|
32 |
-
from diffusers.models.normalization import AdaLayerNormSingle
|
33 |
-
|
34 |
-
|
35 |
-
@dataclass
|
36 |
-
class Transformer2DModelOutput(BaseOutput):
|
37 |
-
"""
|
38 |
-
The output of [`Transformer2DModel`].
|
39 |
-
|
40 |
-
Args:
|
41 |
-
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
42 |
-
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
43 |
-
distributions for the unnoised latent pixels.
|
44 |
-
"""
|
45 |
-
|
46 |
-
sample: torch.FloatTensor
|
47 |
-
|
48 |
-
|
49 |
-
class Transformer2DModel(ModelMixin, ConfigMixin):
|
50 |
-
"""
|
51 |
-
A 2D Transformer model for image-like data.
|
52 |
-
|
53 |
-
Parameters:
|
54 |
-
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
55 |
-
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
56 |
-
in_channels (`int`, *optional*):
|
57 |
-
The number of channels in the input and output (specify if the input is **continuous**).
|
58 |
-
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
59 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
60 |
-
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
61 |
-
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
62 |
-
This is fixed during training since it is used to learn a number of position embeddings.
|
63 |
-
num_vector_embeds (`int`, *optional*):
|
64 |
-
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
65 |
-
Includes the class for the masked latent pixel.
|
66 |
-
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
67 |
-
num_embeds_ada_norm ( `int`, *optional*):
|
68 |
-
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
69 |
-
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
70 |
-
added to the hidden states.
|
71 |
-
|
72 |
-
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
73 |
-
attention_bias (`bool`, *optional*):
|
74 |
-
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
75 |
-
"""
|
76 |
-
|
77 |
-
@register_to_config
|
78 |
-
def __init__(
|
79 |
-
self,
|
80 |
-
num_attention_heads: int = 16,
|
81 |
-
attention_head_dim: int = 88,
|
82 |
-
in_channels: Optional[int] = None,
|
83 |
-
out_channels: Optional[int] = None,
|
84 |
-
num_layers: int = 1,
|
85 |
-
dropout: float = 0.0,
|
86 |
-
norm_num_groups: int = 32,
|
87 |
-
cross_attention_dim: Optional[int] = None,
|
88 |
-
attention_bias: bool = False,
|
89 |
-
sample_size: Optional[int] = None,
|
90 |
-
num_vector_embeds: Optional[int] = None,
|
91 |
-
patch_size: Optional[int] = None,
|
92 |
-
activation_fn: str = "geglu",
|
93 |
-
num_embeds_ada_norm: Optional[int] = None,
|
94 |
-
use_linear_projection: bool = False,
|
95 |
-
only_cross_attention: bool = False,
|
96 |
-
double_self_attention: bool = False,
|
97 |
-
upcast_attention: bool = False,
|
98 |
-
norm_type: str = "layer_norm",
|
99 |
-
norm_elementwise_affine: bool = True,
|
100 |
-
norm_eps: float = 1e-5,
|
101 |
-
attention_type: str = "default",
|
102 |
-
caption_channels: int = None,
|
103 |
-
):
|
104 |
-
super().__init__()
|
105 |
-
self.use_linear_projection = use_linear_projection
|
106 |
-
self.num_attention_heads = num_attention_heads
|
107 |
-
self.attention_head_dim = attention_head_dim
|
108 |
-
inner_dim = num_attention_heads * attention_head_dim
|
109 |
-
|
110 |
-
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
111 |
-
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
112 |
-
|
113 |
-
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
114 |
-
# Define whether input is continuous or discrete depending on configuration
|
115 |
-
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
116 |
-
self.is_input_vectorized = num_vector_embeds is not None
|
117 |
-
self.is_input_patches = in_channels is not None and patch_size is not None
|
118 |
-
|
119 |
-
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
120 |
-
deprecation_message = (
|
121 |
-
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
122 |
-
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
123 |
-
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
124 |
-
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
125 |
-
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
126 |
-
)
|
127 |
-
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
128 |
-
norm_type = "ada_norm"
|
129 |
-
|
130 |
-
if self.is_input_continuous and self.is_input_vectorized:
|
131 |
-
raise ValueError(
|
132 |
-
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
133 |
-
" sure that either `in_channels` or `num_vector_embeds` is None."
|
134 |
-
)
|
135 |
-
elif self.is_input_vectorized and self.is_input_patches:
|
136 |
-
raise ValueError(
|
137 |
-
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
138 |
-
" sure that either `num_vector_embeds` or `num_patches` is None."
|
139 |
-
)
|
140 |
-
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
141 |
-
raise ValueError(
|
142 |
-
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
143 |
-
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
144 |
-
)
|
145 |
-
|
146 |
-
# 2. Define input layers
|
147 |
-
if self.is_input_continuous:
|
148 |
-
self.in_channels = in_channels
|
149 |
-
|
150 |
-
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
151 |
-
if use_linear_projection:
|
152 |
-
self.proj_in = linear_cls(in_channels, inner_dim)
|
153 |
-
else:
|
154 |
-
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
155 |
-
elif self.is_input_vectorized:
|
156 |
-
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
157 |
-
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
158 |
-
|
159 |
-
self.height = sample_size
|
160 |
-
self.width = sample_size
|
161 |
-
self.num_vector_embeds = num_vector_embeds
|
162 |
-
self.num_latent_pixels = self.height * self.width
|
163 |
-
|
164 |
-
self.latent_image_embedding = ImagePositionalEmbeddings(
|
165 |
-
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
166 |
-
)
|
167 |
-
elif self.is_input_patches:
|
168 |
-
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
169 |
-
|
170 |
-
self.height = sample_size
|
171 |
-
self.width = sample_size
|
172 |
-
|
173 |
-
self.patch_size = patch_size
|
174 |
-
interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
|
175 |
-
interpolation_scale = max(interpolation_scale, 1)
|
176 |
-
self.pos_embed = PatchEmbed(
|
177 |
-
height=sample_size,
|
178 |
-
width=sample_size,
|
179 |
-
patch_size=patch_size,
|
180 |
-
in_channels=in_channels,
|
181 |
-
embed_dim=inner_dim,
|
182 |
-
interpolation_scale=interpolation_scale,
|
183 |
-
)
|
184 |
-
|
185 |
-
# 3. Define transformers blocks
|
186 |
-
self.transformer_blocks = nn.ModuleList(
|
187 |
-
[
|
188 |
-
BasicTransformerBlock(
|
189 |
-
inner_dim,
|
190 |
-
num_attention_heads,
|
191 |
-
attention_head_dim,
|
192 |
-
dropout=dropout,
|
193 |
-
cross_attention_dim=cross_attention_dim,
|
194 |
-
activation_fn=activation_fn,
|
195 |
-
num_embeds_ada_norm=num_embeds_ada_norm,
|
196 |
-
attention_bias=attention_bias,
|
197 |
-
only_cross_attention=only_cross_attention,
|
198 |
-
double_self_attention=double_self_attention,
|
199 |
-
upcast_attention=upcast_attention,
|
200 |
-
norm_type=norm_type,
|
201 |
-
norm_elementwise_affine=norm_elementwise_affine,
|
202 |
-
norm_eps=norm_eps,
|
203 |
-
attention_type=attention_type,
|
204 |
-
)
|
205 |
-
for d in range(num_layers)
|
206 |
-
]
|
207 |
-
)
|
208 |
-
|
209 |
-
# 4. Define output layers
|
210 |
-
self.out_channels = in_channels if out_channels is None else out_channels
|
211 |
-
if self.is_input_continuous:
|
212 |
-
# TODO: should use out_channels for continuous projections
|
213 |
-
if use_linear_projection:
|
214 |
-
self.proj_out = linear_cls(inner_dim, in_channels)
|
215 |
-
else:
|
216 |
-
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
217 |
-
elif self.is_input_vectorized:
|
218 |
-
self.norm_out = nn.LayerNorm(inner_dim)
|
219 |
-
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
220 |
-
elif self.is_input_patches and norm_type != "ada_norm_single":
|
221 |
-
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
222 |
-
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
223 |
-
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
224 |
-
elif self.is_input_patches and norm_type == "ada_norm_single":
|
225 |
-
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
226 |
-
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
227 |
-
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
228 |
-
|
229 |
-
# 5. PixArt-Alpha blocks.
|
230 |
-
self.adaln_single = None
|
231 |
-
self.use_additional_conditions = False
|
232 |
-
if norm_type == "ada_norm_single":
|
233 |
-
self.use_additional_conditions = self.config.sample_size == 128
|
234 |
-
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
235 |
-
# additional conditions until we find better name
|
236 |
-
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
|
237 |
-
|
238 |
-
self.caption_projection = None
|
239 |
-
if caption_channels is not None:
|
240 |
-
self.caption_projection = CaptionProjection(in_features=caption_channels, hidden_size=inner_dim)
|
241 |
-
|
242 |
-
self.gradient_checkpointing = False
|
243 |
-
|
244 |
-
def forward(
|
245 |
-
self,
|
246 |
-
hidden_states: torch.Tensor,
|
247 |
-
spatial_attn_inputs = [],
|
248 |
-
spatial_attn_idx = 0,
|
249 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
250 |
-
timestep: Optional[torch.LongTensor] = None,
|
251 |
-
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
252 |
-
class_labels: Optional[torch.LongTensor] = None,
|
253 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
254 |
-
attention_mask: Optional[torch.Tensor] = None,
|
255 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
256 |
-
return_dict: bool = True,
|
257 |
-
):
|
258 |
-
"""
|
259 |
-
The [`Transformer2DModel`] forward method.
|
260 |
-
|
261 |
-
Args:
|
262 |
-
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
263 |
-
Input `hidden_states`.
|
264 |
-
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
265 |
-
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
266 |
-
self-attention.
|
267 |
-
timestep ( `torch.LongTensor`, *optional*):
|
268 |
-
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
269 |
-
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
270 |
-
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
271 |
-
`AdaLayerZeroNorm`.
|
272 |
-
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
273 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
274 |
-
`self.processor` in
|
275 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
276 |
-
attention_mask ( `torch.Tensor`, *optional*):
|
277 |
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
278 |
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
279 |
-
negative values to the attention scores corresponding to "discard" tokens.
|
280 |
-
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
281 |
-
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
282 |
-
|
283 |
-
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
284 |
-
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
285 |
-
|
286 |
-
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
287 |
-
above. This bias will be added to the cross-attention scores.
|
288 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
289 |
-
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
290 |
-
tuple.
|
291 |
-
|
292 |
-
Returns:
|
293 |
-
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
294 |
-
`tuple` where the first element is the sample tensor.
|
295 |
-
"""
|
296 |
-
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
297 |
-
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
298 |
-
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
299 |
-
# expects mask of shape:
|
300 |
-
# [batch, key_tokens]
|
301 |
-
# adds singleton query_tokens dimension:
|
302 |
-
# [batch, 1, key_tokens]
|
303 |
-
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
304 |
-
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
305 |
-
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
306 |
-
if attention_mask is not None and attention_mask.ndim == 2:
|
307 |
-
# assume that mask is expressed as:
|
308 |
-
# (1 = keep, 0 = discard)
|
309 |
-
# convert mask into a bias that can be added to attention scores:
|
310 |
-
# (keep = +0, discard = -10000.0)
|
311 |
-
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
312 |
-
attention_mask = attention_mask.unsqueeze(1)
|
313 |
-
|
314 |
-
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
315 |
-
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
316 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
317 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
318 |
-
|
319 |
-
# Retrieve lora scale.
|
320 |
-
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
321 |
-
|
322 |
-
# 1. Input
|
323 |
-
if self.is_input_continuous:
|
324 |
-
batch, _, height, width = hidden_states.shape
|
325 |
-
residual = hidden_states
|
326 |
-
|
327 |
-
hidden_states = self.norm(hidden_states)
|
328 |
-
if not self.use_linear_projection:
|
329 |
-
hidden_states = (
|
330 |
-
self.proj_in(hidden_states, scale=lora_scale)
|
331 |
-
if not USE_PEFT_BACKEND
|
332 |
-
else self.proj_in(hidden_states)
|
333 |
-
)
|
334 |
-
inner_dim = hidden_states.shape[1]
|
335 |
-
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
336 |
-
else:
|
337 |
-
inner_dim = hidden_states.shape[1]
|
338 |
-
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
339 |
-
hidden_states = (
|
340 |
-
self.proj_in(hidden_states, scale=lora_scale)
|
341 |
-
if not USE_PEFT_BACKEND
|
342 |
-
else self.proj_in(hidden_states)
|
343 |
-
)
|
344 |
-
|
345 |
-
elif self.is_input_vectorized:
|
346 |
-
hidden_states = self.latent_image_embedding(hidden_states)
|
347 |
-
elif self.is_input_patches:
|
348 |
-
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
349 |
-
hidden_states = self.pos_embed(hidden_states)
|
350 |
-
|
351 |
-
if self.adaln_single is not None:
|
352 |
-
if self.use_additional_conditions and added_cond_kwargs is None:
|
353 |
-
raise ValueError(
|
354 |
-
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
355 |
-
)
|
356 |
-
batch_size = hidden_states.shape[0]
|
357 |
-
timestep, embedded_timestep = self.adaln_single(
|
358 |
-
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
359 |
-
)
|
360 |
-
|
361 |
-
# 2. Blocks
|
362 |
-
if self.caption_projection is not None:
|
363 |
-
batch_size = hidden_states.shape[0]
|
364 |
-
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
365 |
-
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
366 |
-
|
367 |
-
for block in self.transformer_blocks:
|
368 |
-
if self.training and self.gradient_checkpointing:
|
369 |
-
hidden_states, spatial_attn_inputs, spatial_attn_idx = torch.utils.checkpoint.checkpoint(
|
370 |
-
block,
|
371 |
-
hidden_states,
|
372 |
-
spatial_attn_inputs,
|
373 |
-
spatial_attn_idx,
|
374 |
-
attention_mask,
|
375 |
-
encoder_hidden_states,
|
376 |
-
encoder_attention_mask,
|
377 |
-
timestep,
|
378 |
-
cross_attention_kwargs,
|
379 |
-
class_labels,
|
380 |
-
use_reentrant=False,
|
381 |
-
)
|
382 |
-
else:
|
383 |
-
hidden_states, spatial_attn_inputs, spatial_attn_idx = block(
|
384 |
-
hidden_states,
|
385 |
-
spatial_attn_inputs,
|
386 |
-
spatial_attn_idx,
|
387 |
-
attention_mask=attention_mask,
|
388 |
-
encoder_hidden_states=encoder_hidden_states,
|
389 |
-
encoder_attention_mask=encoder_attention_mask,
|
390 |
-
timestep=timestep,
|
391 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
392 |
-
class_labels=class_labels,
|
393 |
-
)
|
394 |
-
|
395 |
-
# 3. Output
|
396 |
-
if self.is_input_continuous:
|
397 |
-
if not self.use_linear_projection:
|
398 |
-
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
399 |
-
hidden_states = (
|
400 |
-
self.proj_out(hidden_states, scale=lora_scale)
|
401 |
-
if not USE_PEFT_BACKEND
|
402 |
-
else self.proj_out(hidden_states)
|
403 |
-
)
|
404 |
-
else:
|
405 |
-
hidden_states = (
|
406 |
-
self.proj_out(hidden_states, scale=lora_scale)
|
407 |
-
if not USE_PEFT_BACKEND
|
408 |
-
else self.proj_out(hidden_states)
|
409 |
-
)
|
410 |
-
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
411 |
-
|
412 |
-
output = hidden_states + residual
|
413 |
-
elif self.is_input_vectorized:
|
414 |
-
hidden_states = self.norm_out(hidden_states)
|
415 |
-
logits = self.out(hidden_states)
|
416 |
-
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
417 |
-
logits = logits.permute(0, 2, 1)
|
418 |
-
|
419 |
-
# log(p(x_0))
|
420 |
-
output = F.log_softmax(logits.double(), dim=1).float()
|
421 |
-
|
422 |
-
if self.is_input_patches:
|
423 |
-
if self.config.norm_type != "ada_norm_single":
|
424 |
-
conditioning = self.transformer_blocks[0].norm1.emb(
|
425 |
-
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
426 |
-
)
|
427 |
-
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
428 |
-
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
429 |
-
hidden_states = self.proj_out_2(hidden_states)
|
430 |
-
elif self.config.norm_type == "ada_norm_single":
|
431 |
-
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
432 |
-
hidden_states = self.norm_out(hidden_states)
|
433 |
-
# Modulation
|
434 |
-
hidden_states = hidden_states * (1 + scale) + shift
|
435 |
-
hidden_states = self.proj_out(hidden_states)
|
436 |
-
hidden_states = hidden_states.squeeze(1)
|
437 |
-
|
438 |
-
# unpatchify
|
439 |
-
if self.adaln_single is None:
|
440 |
-
height = width = int(hidden_states.shape[1] ** 0.5)
|
441 |
-
hidden_states = hidden_states.reshape(
|
442 |
-
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
443 |
-
)
|
444 |
-
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
445 |
-
output = hidden_states.reshape(
|
446 |
-
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
447 |
-
)
|
448 |
-
|
449 |
-
if not return_dict:
|
450 |
-
return (output,), spatial_attn_inputs, spatial_attn_idx
|
451 |
-
|
452 |
-
return Transformer2DModelOutput(sample=output), spatial_attn_inputs, spatial_attn_idx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ootd/pipelines_ootd/unet_garm_2d_blocks.py
DELETED
The diff for this file is too large to render.
See raw diff
|
|
ootd/pipelines_ootd/unet_garm_2d_condition.py
DELETED
@@ -1,1183 +0,0 @@
|
|
1 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
-
from dataclasses import dataclass
|
17 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn as nn
|
21 |
-
import torch.utils.checkpoint
|
22 |
-
|
23 |
-
from .unet_garm_2d_blocks import (
|
24 |
-
UNetMidBlock2D,
|
25 |
-
UNetMidBlock2DCrossAttn,
|
26 |
-
UNetMidBlock2DSimpleCrossAttn,
|
27 |
-
get_down_block,
|
28 |
-
get_up_block,
|
29 |
-
)
|
30 |
-
|
31 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
32 |
-
from diffusers.loaders import UNet2DConditionLoadersMixin
|
33 |
-
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
34 |
-
from diffusers.models.activations import get_activation
|
35 |
-
from diffusers.models.attention_processor import (
|
36 |
-
ADDED_KV_ATTENTION_PROCESSORS,
|
37 |
-
CROSS_ATTENTION_PROCESSORS,
|
38 |
-
AttentionProcessor,
|
39 |
-
AttnAddedKVProcessor,
|
40 |
-
AttnProcessor,
|
41 |
-
)
|
42 |
-
from diffusers.models.embeddings import (
|
43 |
-
GaussianFourierProjection,
|
44 |
-
ImageHintTimeEmbedding,
|
45 |
-
ImageProjection,
|
46 |
-
ImageTimeEmbedding,
|
47 |
-
PositionNet,
|
48 |
-
TextImageProjection,
|
49 |
-
TextImageTimeEmbedding,
|
50 |
-
TextTimeEmbedding,
|
51 |
-
TimestepEmbedding,
|
52 |
-
Timesteps,
|
53 |
-
)
|
54 |
-
from diffusers.models.modeling_utils import ModelMixin
|
55 |
-
# from diffusers.models.unet_2d_blocks import (
|
56 |
-
# UNetMidBlock2D,
|
57 |
-
# UNetMidBlock2DCrossAttn,
|
58 |
-
# UNetMidBlock2DSimpleCrossAttn,
|
59 |
-
# get_down_block,
|
60 |
-
# get_up_block,
|
61 |
-
# )
|
62 |
-
|
63 |
-
|
64 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
65 |
-
|
66 |
-
|
67 |
-
@dataclass
|
68 |
-
class UNet2DConditionOutput(BaseOutput):
|
69 |
-
"""
|
70 |
-
The output of [`UNet2DConditionModel`].
|
71 |
-
|
72 |
-
Args:
|
73 |
-
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
74 |
-
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
75 |
-
"""
|
76 |
-
|
77 |
-
sample: torch.FloatTensor = None
|
78 |
-
|
79 |
-
|
80 |
-
class UNetGarm2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
81 |
-
r"""
|
82 |
-
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
83 |
-
shaped output.
|
84 |
-
|
85 |
-
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
86 |
-
for all models (such as downloading or saving).
|
87 |
-
|
88 |
-
Parameters:
|
89 |
-
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
90 |
-
Height and width of input/output sample.
|
91 |
-
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
92 |
-
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
93 |
-
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
94 |
-
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
95 |
-
Whether to flip the sin to cos in the time embedding.
|
96 |
-
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
97 |
-
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
98 |
-
The tuple of downsample blocks to use.
|
99 |
-
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
100 |
-
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
101 |
-
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
102 |
-
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
103 |
-
The tuple of upsample blocks to use.
|
104 |
-
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
105 |
-
Whether to include self-attention in the basic transformer blocks, see
|
106 |
-
[`~models.attention.BasicTransformerBlock`].
|
107 |
-
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
108 |
-
The tuple of output channels for each block.
|
109 |
-
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
110 |
-
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
111 |
-
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
112 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
113 |
-
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
114 |
-
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
115 |
-
If `None`, normalization and activation layers is skipped in post-processing.
|
116 |
-
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
117 |
-
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
118 |
-
The dimension of the cross attention features.
|
119 |
-
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
120 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
121 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
122 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
123 |
-
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
124 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
125 |
-
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
126 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
127 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
128 |
-
encoder_hid_dim (`int`, *optional*, defaults to None):
|
129 |
-
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
130 |
-
dimension to `cross_attention_dim`.
|
131 |
-
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
132 |
-
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
133 |
-
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
134 |
-
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
135 |
-
num_attention_heads (`int`, *optional*):
|
136 |
-
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
137 |
-
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
138 |
-
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
139 |
-
class_embed_type (`str`, *optional*, defaults to `None`):
|
140 |
-
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
141 |
-
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
142 |
-
addition_embed_type (`str`, *optional*, defaults to `None`):
|
143 |
-
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
144 |
-
"text". "text" will use the `TextTimeEmbedding` layer.
|
145 |
-
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
146 |
-
Dimension for the timestep embeddings.
|
147 |
-
num_class_embeds (`int`, *optional*, defaults to `None`):
|
148 |
-
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
149 |
-
class conditioning with `class_embed_type` equal to `None`.
|
150 |
-
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
151 |
-
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
152 |
-
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
153 |
-
An optional override for the dimension of the projected time embedding.
|
154 |
-
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
155 |
-
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
156 |
-
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
157 |
-
timestep_post_act (`str`, *optional*, defaults to `None`):
|
158 |
-
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
159 |
-
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
160 |
-
The dimension of `cond_proj` layer in the timestep embedding.
|
161 |
-
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
162 |
-
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
163 |
-
*optional*): The dimension of the `class_labels` input when
|
164 |
-
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
165 |
-
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
166 |
-
embeddings with the class embeddings.
|
167 |
-
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
168 |
-
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
169 |
-
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
170 |
-
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
171 |
-
otherwise.
|
172 |
-
"""
|
173 |
-
|
174 |
-
_supports_gradient_checkpointing = True
|
175 |
-
|
176 |
-
@register_to_config
|
177 |
-
def __init__(
|
178 |
-
self,
|
179 |
-
sample_size: Optional[int] = None,
|
180 |
-
in_channels: int = 4,
|
181 |
-
out_channels: int = 4,
|
182 |
-
center_input_sample: bool = False,
|
183 |
-
flip_sin_to_cos: bool = True,
|
184 |
-
freq_shift: int = 0,
|
185 |
-
down_block_types: Tuple[str] = (
|
186 |
-
"CrossAttnDownBlock2D",
|
187 |
-
"CrossAttnDownBlock2D",
|
188 |
-
"CrossAttnDownBlock2D",
|
189 |
-
"DownBlock2D",
|
190 |
-
),
|
191 |
-
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
192 |
-
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
193 |
-
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
194 |
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
195 |
-
layers_per_block: Union[int, Tuple[int]] = 2,
|
196 |
-
downsample_padding: int = 1,
|
197 |
-
mid_block_scale_factor: float = 1,
|
198 |
-
dropout: float = 0.0,
|
199 |
-
act_fn: str = "silu",
|
200 |
-
norm_num_groups: Optional[int] = 32,
|
201 |
-
norm_eps: float = 1e-5,
|
202 |
-
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
203 |
-
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
204 |
-
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
205 |
-
encoder_hid_dim: Optional[int] = None,
|
206 |
-
encoder_hid_dim_type: Optional[str] = None,
|
207 |
-
attention_head_dim: Union[int, Tuple[int]] = 8,
|
208 |
-
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
209 |
-
dual_cross_attention: bool = False,
|
210 |
-
use_linear_projection: bool = False,
|
211 |
-
class_embed_type: Optional[str] = None,
|
212 |
-
addition_embed_type: Optional[str] = None,
|
213 |
-
addition_time_embed_dim: Optional[int] = None,
|
214 |
-
num_class_embeds: Optional[int] = None,
|
215 |
-
upcast_attention: bool = False,
|
216 |
-
resnet_time_scale_shift: str = "default",
|
217 |
-
resnet_skip_time_act: bool = False,
|
218 |
-
resnet_out_scale_factor: int = 1.0,
|
219 |
-
time_embedding_type: str = "positional",
|
220 |
-
time_embedding_dim: Optional[int] = None,
|
221 |
-
time_embedding_act_fn: Optional[str] = None,
|
222 |
-
timestep_post_act: Optional[str] = None,
|
223 |
-
time_cond_proj_dim: Optional[int] = None,
|
224 |
-
conv_in_kernel: int = 3,
|
225 |
-
conv_out_kernel: int = 3,
|
226 |
-
projection_class_embeddings_input_dim: Optional[int] = None,
|
227 |
-
attention_type: str = "default",
|
228 |
-
class_embeddings_concat: bool = False,
|
229 |
-
mid_block_only_cross_attention: Optional[bool] = None,
|
230 |
-
cross_attention_norm: Optional[str] = None,
|
231 |
-
addition_embed_type_num_heads=64,
|
232 |
-
):
|
233 |
-
super().__init__()
|
234 |
-
|
235 |
-
self.sample_size = sample_size
|
236 |
-
|
237 |
-
if num_attention_heads is not None:
|
238 |
-
raise ValueError(
|
239 |
-
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
240 |
-
)
|
241 |
-
|
242 |
-
# If `num_attention_heads` is not defined (which is the case for most models)
|
243 |
-
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
244 |
-
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
245 |
-
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
246 |
-
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
247 |
-
# which is why we correct for the naming here.
|
248 |
-
num_attention_heads = num_attention_heads or attention_head_dim
|
249 |
-
|
250 |
-
# Check inputs
|
251 |
-
if len(down_block_types) != len(up_block_types):
|
252 |
-
raise ValueError(
|
253 |
-
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
254 |
-
)
|
255 |
-
|
256 |
-
if len(block_out_channels) != len(down_block_types):
|
257 |
-
raise ValueError(
|
258 |
-
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
259 |
-
)
|
260 |
-
|
261 |
-
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
262 |
-
raise ValueError(
|
263 |
-
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
264 |
-
)
|
265 |
-
|
266 |
-
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
267 |
-
raise ValueError(
|
268 |
-
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
269 |
-
)
|
270 |
-
|
271 |
-
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
272 |
-
raise ValueError(
|
273 |
-
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
274 |
-
)
|
275 |
-
|
276 |
-
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
277 |
-
raise ValueError(
|
278 |
-
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
279 |
-
)
|
280 |
-
|
281 |
-
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
282 |
-
raise ValueError(
|
283 |
-
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
284 |
-
)
|
285 |
-
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
286 |
-
for layer_number_per_block in transformer_layers_per_block:
|
287 |
-
if isinstance(layer_number_per_block, list):
|
288 |
-
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
289 |
-
|
290 |
-
# input
|
291 |
-
conv_in_padding = (conv_in_kernel - 1) // 2
|
292 |
-
self.conv_in = nn.Conv2d(
|
293 |
-
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
294 |
-
)
|
295 |
-
|
296 |
-
# time
|
297 |
-
if time_embedding_type == "fourier":
|
298 |
-
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
299 |
-
if time_embed_dim % 2 != 0:
|
300 |
-
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
301 |
-
self.time_proj = GaussianFourierProjection(
|
302 |
-
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
303 |
-
)
|
304 |
-
timestep_input_dim = time_embed_dim
|
305 |
-
elif time_embedding_type == "positional":
|
306 |
-
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
307 |
-
|
308 |
-
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
309 |
-
timestep_input_dim = block_out_channels[0]
|
310 |
-
else:
|
311 |
-
raise ValueError(
|
312 |
-
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
313 |
-
)
|
314 |
-
|
315 |
-
self.time_embedding = TimestepEmbedding(
|
316 |
-
timestep_input_dim,
|
317 |
-
time_embed_dim,
|
318 |
-
act_fn=act_fn,
|
319 |
-
post_act_fn=timestep_post_act,
|
320 |
-
cond_proj_dim=time_cond_proj_dim,
|
321 |
-
)
|
322 |
-
|
323 |
-
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
324 |
-
encoder_hid_dim_type = "text_proj"
|
325 |
-
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
326 |
-
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
327 |
-
|
328 |
-
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
329 |
-
raise ValueError(
|
330 |
-
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
331 |
-
)
|
332 |
-
|
333 |
-
if encoder_hid_dim_type == "text_proj":
|
334 |
-
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
335 |
-
elif encoder_hid_dim_type == "text_image_proj":
|
336 |
-
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
337 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
338 |
-
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
339 |
-
self.encoder_hid_proj = TextImageProjection(
|
340 |
-
text_embed_dim=encoder_hid_dim,
|
341 |
-
image_embed_dim=cross_attention_dim,
|
342 |
-
cross_attention_dim=cross_attention_dim,
|
343 |
-
)
|
344 |
-
elif encoder_hid_dim_type == "image_proj":
|
345 |
-
# Kandinsky 2.2
|
346 |
-
self.encoder_hid_proj = ImageProjection(
|
347 |
-
image_embed_dim=encoder_hid_dim,
|
348 |
-
cross_attention_dim=cross_attention_dim,
|
349 |
-
)
|
350 |
-
elif encoder_hid_dim_type is not None:
|
351 |
-
raise ValueError(
|
352 |
-
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
353 |
-
)
|
354 |
-
else:
|
355 |
-
self.encoder_hid_proj = None
|
356 |
-
|
357 |
-
# class embedding
|
358 |
-
if class_embed_type is None and num_class_embeds is not None:
|
359 |
-
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
360 |
-
elif class_embed_type == "timestep":
|
361 |
-
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
362 |
-
elif class_embed_type == "identity":
|
363 |
-
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
364 |
-
elif class_embed_type == "projection":
|
365 |
-
if projection_class_embeddings_input_dim is None:
|
366 |
-
raise ValueError(
|
367 |
-
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
368 |
-
)
|
369 |
-
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
370 |
-
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
371 |
-
# 2. it projects from an arbitrary input dimension.
|
372 |
-
#
|
373 |
-
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
374 |
-
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
375 |
-
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
376 |
-
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
377 |
-
elif class_embed_type == "simple_projection":
|
378 |
-
if projection_class_embeddings_input_dim is None:
|
379 |
-
raise ValueError(
|
380 |
-
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
381 |
-
)
|
382 |
-
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
383 |
-
else:
|
384 |
-
self.class_embedding = None
|
385 |
-
|
386 |
-
if addition_embed_type == "text":
|
387 |
-
if encoder_hid_dim is not None:
|
388 |
-
text_time_embedding_from_dim = encoder_hid_dim
|
389 |
-
else:
|
390 |
-
text_time_embedding_from_dim = cross_attention_dim
|
391 |
-
|
392 |
-
self.add_embedding = TextTimeEmbedding(
|
393 |
-
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
394 |
-
)
|
395 |
-
elif addition_embed_type == "text_image":
|
396 |
-
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
397 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
398 |
-
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
399 |
-
self.add_embedding = TextImageTimeEmbedding(
|
400 |
-
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
401 |
-
)
|
402 |
-
elif addition_embed_type == "text_time":
|
403 |
-
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
404 |
-
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
405 |
-
elif addition_embed_type == "image":
|
406 |
-
# Kandinsky 2.2
|
407 |
-
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
408 |
-
elif addition_embed_type == "image_hint":
|
409 |
-
# Kandinsky 2.2 ControlNet
|
410 |
-
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
411 |
-
elif addition_embed_type is not None:
|
412 |
-
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
413 |
-
|
414 |
-
if time_embedding_act_fn is None:
|
415 |
-
self.time_embed_act = None
|
416 |
-
else:
|
417 |
-
self.time_embed_act = get_activation(time_embedding_act_fn)
|
418 |
-
|
419 |
-
self.down_blocks = nn.ModuleList([])
|
420 |
-
self.up_blocks = nn.ModuleList([])
|
421 |
-
|
422 |
-
if isinstance(only_cross_attention, bool):
|
423 |
-
if mid_block_only_cross_attention is None:
|
424 |
-
mid_block_only_cross_attention = only_cross_attention
|
425 |
-
|
426 |
-
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
427 |
-
|
428 |
-
if mid_block_only_cross_attention is None:
|
429 |
-
mid_block_only_cross_attention = False
|
430 |
-
|
431 |
-
if isinstance(num_attention_heads, int):
|
432 |
-
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
433 |
-
|
434 |
-
if isinstance(attention_head_dim, int):
|
435 |
-
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
436 |
-
|
437 |
-
if isinstance(cross_attention_dim, int):
|
438 |
-
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
439 |
-
|
440 |
-
if isinstance(layers_per_block, int):
|
441 |
-
layers_per_block = [layers_per_block] * len(down_block_types)
|
442 |
-
|
443 |
-
if isinstance(transformer_layers_per_block, int):
|
444 |
-
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
445 |
-
|
446 |
-
if class_embeddings_concat:
|
447 |
-
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
448 |
-
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
449 |
-
# regular time embeddings
|
450 |
-
blocks_time_embed_dim = time_embed_dim * 2
|
451 |
-
else:
|
452 |
-
blocks_time_embed_dim = time_embed_dim
|
453 |
-
|
454 |
-
# down
|
455 |
-
output_channel = block_out_channels[0]
|
456 |
-
for i, down_block_type in enumerate(down_block_types):
|
457 |
-
input_channel = output_channel
|
458 |
-
output_channel = block_out_channels[i]
|
459 |
-
is_final_block = i == len(block_out_channels) - 1
|
460 |
-
|
461 |
-
down_block = get_down_block(
|
462 |
-
down_block_type,
|
463 |
-
num_layers=layers_per_block[i],
|
464 |
-
transformer_layers_per_block=transformer_layers_per_block[i],
|
465 |
-
in_channels=input_channel,
|
466 |
-
out_channels=output_channel,
|
467 |
-
temb_channels=blocks_time_embed_dim,
|
468 |
-
add_downsample=not is_final_block,
|
469 |
-
resnet_eps=norm_eps,
|
470 |
-
resnet_act_fn=act_fn,
|
471 |
-
resnet_groups=norm_num_groups,
|
472 |
-
cross_attention_dim=cross_attention_dim[i],
|
473 |
-
num_attention_heads=num_attention_heads[i],
|
474 |
-
downsample_padding=downsample_padding,
|
475 |
-
dual_cross_attention=dual_cross_attention,
|
476 |
-
use_linear_projection=use_linear_projection,
|
477 |
-
only_cross_attention=only_cross_attention[i],
|
478 |
-
upcast_attention=upcast_attention,
|
479 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
480 |
-
attention_type=attention_type,
|
481 |
-
resnet_skip_time_act=resnet_skip_time_act,
|
482 |
-
resnet_out_scale_factor=resnet_out_scale_factor,
|
483 |
-
cross_attention_norm=cross_attention_norm,
|
484 |
-
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
485 |
-
dropout=dropout,
|
486 |
-
)
|
487 |
-
self.down_blocks.append(down_block)
|
488 |
-
|
489 |
-
# mid
|
490 |
-
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
491 |
-
self.mid_block = UNetMidBlock2DCrossAttn(
|
492 |
-
transformer_layers_per_block=transformer_layers_per_block[-1],
|
493 |
-
in_channels=block_out_channels[-1],
|
494 |
-
temb_channels=blocks_time_embed_dim,
|
495 |
-
dropout=dropout,
|
496 |
-
resnet_eps=norm_eps,
|
497 |
-
resnet_act_fn=act_fn,
|
498 |
-
output_scale_factor=mid_block_scale_factor,
|
499 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
500 |
-
cross_attention_dim=cross_attention_dim[-1],
|
501 |
-
num_attention_heads=num_attention_heads[-1],
|
502 |
-
resnet_groups=norm_num_groups,
|
503 |
-
dual_cross_attention=dual_cross_attention,
|
504 |
-
use_linear_projection=use_linear_projection,
|
505 |
-
upcast_attention=upcast_attention,
|
506 |
-
attention_type=attention_type,
|
507 |
-
)
|
508 |
-
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
509 |
-
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
510 |
-
in_channels=block_out_channels[-1],
|
511 |
-
temb_channels=blocks_time_embed_dim,
|
512 |
-
dropout=dropout,
|
513 |
-
resnet_eps=norm_eps,
|
514 |
-
resnet_act_fn=act_fn,
|
515 |
-
output_scale_factor=mid_block_scale_factor,
|
516 |
-
cross_attention_dim=cross_attention_dim[-1],
|
517 |
-
attention_head_dim=attention_head_dim[-1],
|
518 |
-
resnet_groups=norm_num_groups,
|
519 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
520 |
-
skip_time_act=resnet_skip_time_act,
|
521 |
-
only_cross_attention=mid_block_only_cross_attention,
|
522 |
-
cross_attention_norm=cross_attention_norm,
|
523 |
-
)
|
524 |
-
elif mid_block_type == "UNetMidBlock2D":
|
525 |
-
self.mid_block = UNetMidBlock2D(
|
526 |
-
in_channels=block_out_channels[-1],
|
527 |
-
temb_channels=blocks_time_embed_dim,
|
528 |
-
dropout=dropout,
|
529 |
-
num_layers=0,
|
530 |
-
resnet_eps=norm_eps,
|
531 |
-
resnet_act_fn=act_fn,
|
532 |
-
output_scale_factor=mid_block_scale_factor,
|
533 |
-
resnet_groups=norm_num_groups,
|
534 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
535 |
-
add_attention=False,
|
536 |
-
)
|
537 |
-
elif mid_block_type is None:
|
538 |
-
self.mid_block = None
|
539 |
-
else:
|
540 |
-
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
541 |
-
|
542 |
-
# count how many layers upsample the images
|
543 |
-
self.num_upsamplers = 0
|
544 |
-
|
545 |
-
# up
|
546 |
-
reversed_block_out_channels = list(reversed(block_out_channels))
|
547 |
-
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
548 |
-
reversed_layers_per_block = list(reversed(layers_per_block))
|
549 |
-
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
550 |
-
reversed_transformer_layers_per_block = (
|
551 |
-
list(reversed(transformer_layers_per_block))
|
552 |
-
if reverse_transformer_layers_per_block is None
|
553 |
-
else reverse_transformer_layers_per_block
|
554 |
-
)
|
555 |
-
only_cross_attention = list(reversed(only_cross_attention))
|
556 |
-
|
557 |
-
output_channel = reversed_block_out_channels[0]
|
558 |
-
for i, up_block_type in enumerate(up_block_types):
|
559 |
-
is_final_block = i == len(block_out_channels) - 1
|
560 |
-
|
561 |
-
prev_output_channel = output_channel
|
562 |
-
output_channel = reversed_block_out_channels[i]
|
563 |
-
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
564 |
-
|
565 |
-
# add upsample block for all BUT final layer
|
566 |
-
if not is_final_block:
|
567 |
-
add_upsample = True
|
568 |
-
self.num_upsamplers += 1
|
569 |
-
else:
|
570 |
-
add_upsample = False
|
571 |
-
|
572 |
-
up_block = get_up_block(
|
573 |
-
up_block_type,
|
574 |
-
num_layers=reversed_layers_per_block[i] + 1,
|
575 |
-
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
576 |
-
in_channels=input_channel,
|
577 |
-
out_channels=output_channel,
|
578 |
-
prev_output_channel=prev_output_channel,
|
579 |
-
temb_channels=blocks_time_embed_dim,
|
580 |
-
add_upsample=add_upsample,
|
581 |
-
resnet_eps=norm_eps,
|
582 |
-
resnet_act_fn=act_fn,
|
583 |
-
resolution_idx=i,
|
584 |
-
resnet_groups=norm_num_groups,
|
585 |
-
cross_attention_dim=reversed_cross_attention_dim[i],
|
586 |
-
num_attention_heads=reversed_num_attention_heads[i],
|
587 |
-
dual_cross_attention=dual_cross_attention,
|
588 |
-
use_linear_projection=use_linear_projection,
|
589 |
-
only_cross_attention=only_cross_attention[i],
|
590 |
-
upcast_attention=upcast_attention,
|
591 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
592 |
-
attention_type=attention_type,
|
593 |
-
resnet_skip_time_act=resnet_skip_time_act,
|
594 |
-
resnet_out_scale_factor=resnet_out_scale_factor,
|
595 |
-
cross_attention_norm=cross_attention_norm,
|
596 |
-
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
597 |
-
dropout=dropout,
|
598 |
-
)
|
599 |
-
self.up_blocks.append(up_block)
|
600 |
-
prev_output_channel = output_channel
|
601 |
-
|
602 |
-
# out
|
603 |
-
if norm_num_groups is not None:
|
604 |
-
self.conv_norm_out = nn.GroupNorm(
|
605 |
-
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
606 |
-
)
|
607 |
-
|
608 |
-
self.conv_act = get_activation(act_fn)
|
609 |
-
|
610 |
-
else:
|
611 |
-
self.conv_norm_out = None
|
612 |
-
self.conv_act = None
|
613 |
-
|
614 |
-
conv_out_padding = (conv_out_kernel - 1) // 2
|
615 |
-
self.conv_out = nn.Conv2d(
|
616 |
-
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
617 |
-
)
|
618 |
-
|
619 |
-
if attention_type in ["gated", "gated-text-image"]:
|
620 |
-
positive_len = 768
|
621 |
-
if isinstance(cross_attention_dim, int):
|
622 |
-
positive_len = cross_attention_dim
|
623 |
-
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
624 |
-
positive_len = cross_attention_dim[0]
|
625 |
-
|
626 |
-
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
627 |
-
self.position_net = PositionNet(
|
628 |
-
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
629 |
-
)
|
630 |
-
|
631 |
-
@property
|
632 |
-
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
633 |
-
r"""
|
634 |
-
Returns:
|
635 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
636 |
-
indexed by its weight name.
|
637 |
-
"""
|
638 |
-
# set recursively
|
639 |
-
processors = {}
|
640 |
-
|
641 |
-
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
642 |
-
if hasattr(module, "get_processor"):
|
643 |
-
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
644 |
-
|
645 |
-
for sub_name, child in module.named_children():
|
646 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
647 |
-
|
648 |
-
return processors
|
649 |
-
|
650 |
-
for name, module in self.named_children():
|
651 |
-
fn_recursive_add_processors(name, module, processors)
|
652 |
-
|
653 |
-
return processors
|
654 |
-
|
655 |
-
def set_attn_processor(
|
656 |
-
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
657 |
-
):
|
658 |
-
r"""
|
659 |
-
Sets the attention processor to use to compute attention.
|
660 |
-
|
661 |
-
Parameters:
|
662 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
663 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
664 |
-
for **all** `Attention` layers.
|
665 |
-
|
666 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
667 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
668 |
-
|
669 |
-
"""
|
670 |
-
count = len(self.attn_processors.keys())
|
671 |
-
|
672 |
-
if isinstance(processor, dict) and len(processor) != count:
|
673 |
-
raise ValueError(
|
674 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
675 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
676 |
-
)
|
677 |
-
|
678 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
679 |
-
if hasattr(module, "set_processor"):
|
680 |
-
if not isinstance(processor, dict):
|
681 |
-
module.set_processor(processor, _remove_lora=_remove_lora)
|
682 |
-
else:
|
683 |
-
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
684 |
-
|
685 |
-
for sub_name, child in module.named_children():
|
686 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
687 |
-
|
688 |
-
for name, module in self.named_children():
|
689 |
-
fn_recursive_attn_processor(name, module, processor)
|
690 |
-
|
691 |
-
def set_default_attn_processor(self):
|
692 |
-
"""
|
693 |
-
Disables custom attention processors and sets the default attention implementation.
|
694 |
-
"""
|
695 |
-
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
696 |
-
processor = AttnAddedKVProcessor()
|
697 |
-
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
698 |
-
processor = AttnProcessor()
|
699 |
-
else:
|
700 |
-
raise ValueError(
|
701 |
-
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
702 |
-
)
|
703 |
-
|
704 |
-
self.set_attn_processor(processor, _remove_lora=True)
|
705 |
-
|
706 |
-
def set_attention_slice(self, slice_size):
|
707 |
-
r"""
|
708 |
-
Enable sliced attention computation.
|
709 |
-
|
710 |
-
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
711 |
-
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
712 |
-
|
713 |
-
Args:
|
714 |
-
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
715 |
-
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
716 |
-
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
717 |
-
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
718 |
-
must be a multiple of `slice_size`.
|
719 |
-
"""
|
720 |
-
sliceable_head_dims = []
|
721 |
-
|
722 |
-
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
723 |
-
if hasattr(module, "set_attention_slice"):
|
724 |
-
sliceable_head_dims.append(module.sliceable_head_dim)
|
725 |
-
|
726 |
-
for child in module.children():
|
727 |
-
fn_recursive_retrieve_sliceable_dims(child)
|
728 |
-
|
729 |
-
# retrieve number of attention layers
|
730 |
-
for module in self.children():
|
731 |
-
fn_recursive_retrieve_sliceable_dims(module)
|
732 |
-
|
733 |
-
num_sliceable_layers = len(sliceable_head_dims)
|
734 |
-
|
735 |
-
if slice_size == "auto":
|
736 |
-
# half the attention head size is usually a good trade-off between
|
737 |
-
# speed and memory
|
738 |
-
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
739 |
-
elif slice_size == "max":
|
740 |
-
# make smallest slice possible
|
741 |
-
slice_size = num_sliceable_layers * [1]
|
742 |
-
|
743 |
-
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
744 |
-
|
745 |
-
if len(slice_size) != len(sliceable_head_dims):
|
746 |
-
raise ValueError(
|
747 |
-
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
748 |
-
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
749 |
-
)
|
750 |
-
|
751 |
-
for i in range(len(slice_size)):
|
752 |
-
size = slice_size[i]
|
753 |
-
dim = sliceable_head_dims[i]
|
754 |
-
if size is not None and size > dim:
|
755 |
-
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
756 |
-
|
757 |
-
# Recursively walk through all the children.
|
758 |
-
# Any children which exposes the set_attention_slice method
|
759 |
-
# gets the message
|
760 |
-
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
761 |
-
if hasattr(module, "set_attention_slice"):
|
762 |
-
module.set_attention_slice(slice_size.pop())
|
763 |
-
|
764 |
-
for child in module.children():
|
765 |
-
fn_recursive_set_attention_slice(child, slice_size)
|
766 |
-
|
767 |
-
reversed_slice_size = list(reversed(slice_size))
|
768 |
-
for module in self.children():
|
769 |
-
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
770 |
-
|
771 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
772 |
-
if hasattr(module, "gradient_checkpointing"):
|
773 |
-
module.gradient_checkpointing = value
|
774 |
-
|
775 |
-
def enable_freeu(self, s1, s2, b1, b2):
|
776 |
-
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
777 |
-
|
778 |
-
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
779 |
-
|
780 |
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
781 |
-
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
782 |
-
|
783 |
-
Args:
|
784 |
-
s1 (`float`):
|
785 |
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
786 |
-
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
787 |
-
s2 (`float`):
|
788 |
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
789 |
-
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
790 |
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
791 |
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
792 |
-
"""
|
793 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
794 |
-
setattr(upsample_block, "s1", s1)
|
795 |
-
setattr(upsample_block, "s2", s2)
|
796 |
-
setattr(upsample_block, "b1", b1)
|
797 |
-
setattr(upsample_block, "b2", b2)
|
798 |
-
|
799 |
-
def disable_freeu(self):
|
800 |
-
"""Disables the FreeU mechanism."""
|
801 |
-
freeu_keys = {"s1", "s2", "b1", "b2"}
|
802 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
803 |
-
for k in freeu_keys:
|
804 |
-
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
805 |
-
setattr(upsample_block, k, None)
|
806 |
-
|
807 |
-
def forward(
|
808 |
-
self,
|
809 |
-
sample: torch.FloatTensor,
|
810 |
-
timestep: Union[torch.Tensor, float, int],
|
811 |
-
encoder_hidden_states: torch.Tensor,
|
812 |
-
class_labels: Optional[torch.Tensor] = None,
|
813 |
-
timestep_cond: Optional[torch.Tensor] = None,
|
814 |
-
attention_mask: Optional[torch.Tensor] = None,
|
815 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
816 |
-
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
817 |
-
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
818 |
-
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
819 |
-
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
820 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
821 |
-
return_dict: bool = True,
|
822 |
-
) -> Union[UNet2DConditionOutput, Tuple]:
|
823 |
-
r"""
|
824 |
-
The [`UNet2DConditionModel`] forward method.
|
825 |
-
|
826 |
-
Args:
|
827 |
-
sample (`torch.FloatTensor`):
|
828 |
-
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
829 |
-
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
830 |
-
encoder_hidden_states (`torch.FloatTensor`):
|
831 |
-
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
832 |
-
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
833 |
-
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
834 |
-
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
835 |
-
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
836 |
-
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
837 |
-
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
838 |
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
839 |
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
840 |
-
negative values to the attention scores corresponding to "discard" tokens.
|
841 |
-
cross_attention_kwargs (`dict`, *optional*):
|
842 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
843 |
-
`self.processor` in
|
844 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
845 |
-
added_cond_kwargs: (`dict`, *optional*):
|
846 |
-
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
847 |
-
are passed along to the UNet blocks.
|
848 |
-
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
849 |
-
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
850 |
-
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
851 |
-
A tensor that if specified is added to the residual of the middle unet block.
|
852 |
-
encoder_attention_mask (`torch.Tensor`):
|
853 |
-
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
854 |
-
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
855 |
-
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
856 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
857 |
-
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
858 |
-
tuple.
|
859 |
-
cross_attention_kwargs (`dict`, *optional*):
|
860 |
-
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
861 |
-
added_cond_kwargs: (`dict`, *optional*):
|
862 |
-
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
863 |
-
are passed along to the UNet blocks.
|
864 |
-
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
865 |
-
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
866 |
-
example from ControlNet side model(s)
|
867 |
-
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
868 |
-
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
869 |
-
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
870 |
-
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
871 |
-
|
872 |
-
Returns:
|
873 |
-
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
874 |
-
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
875 |
-
a `tuple` is returned where the first element is the sample tensor.
|
876 |
-
"""
|
877 |
-
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
878 |
-
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
879 |
-
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
880 |
-
# on the fly if necessary.
|
881 |
-
default_overall_up_factor = 2**self.num_upsamplers
|
882 |
-
|
883 |
-
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
884 |
-
forward_upsample_size = False
|
885 |
-
upsample_size = None
|
886 |
-
|
887 |
-
for dim in sample.shape[-2:]:
|
888 |
-
if dim % default_overall_up_factor != 0:
|
889 |
-
# Forward upsample size to force interpolation output size.
|
890 |
-
forward_upsample_size = True
|
891 |
-
break
|
892 |
-
|
893 |
-
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
894 |
-
# expects mask of shape:
|
895 |
-
# [batch, key_tokens]
|
896 |
-
# adds singleton query_tokens dimension:
|
897 |
-
# [batch, 1, key_tokens]
|
898 |
-
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
899 |
-
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
900 |
-
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
901 |
-
if attention_mask is not None:
|
902 |
-
# assume that mask is expressed as:
|
903 |
-
# (1 = keep, 0 = discard)
|
904 |
-
# convert mask into a bias that can be added to attention scores:
|
905 |
-
# (keep = +0, discard = -10000.0)
|
906 |
-
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
907 |
-
attention_mask = attention_mask.unsqueeze(1)
|
908 |
-
|
909 |
-
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
910 |
-
if encoder_attention_mask is not None:
|
911 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
912 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
913 |
-
|
914 |
-
# 0. center input if necessary
|
915 |
-
if self.config.center_input_sample:
|
916 |
-
sample = 2 * sample - 1.0
|
917 |
-
|
918 |
-
# 1. time
|
919 |
-
timesteps = timestep
|
920 |
-
if not torch.is_tensor(timesteps):
|
921 |
-
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
922 |
-
# This would be a good case for the `match` statement (Python 3.10+)
|
923 |
-
is_mps = sample.device.type == "mps"
|
924 |
-
if isinstance(timestep, float):
|
925 |
-
dtype = torch.float32 if is_mps else torch.float64
|
926 |
-
else:
|
927 |
-
dtype = torch.int32 if is_mps else torch.int64
|
928 |
-
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
929 |
-
elif len(timesteps.shape) == 0:
|
930 |
-
timesteps = timesteps[None].to(sample.device)
|
931 |
-
|
932 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
933 |
-
timesteps = timesteps.expand(sample.shape[0])
|
934 |
-
|
935 |
-
t_emb = self.time_proj(timesteps)
|
936 |
-
|
937 |
-
# `Timesteps` does not contain any weights and will always return f32 tensors
|
938 |
-
# but time_embedding might actually be running in fp16. so we need to cast here.
|
939 |
-
# there might be better ways to encapsulate this.
|
940 |
-
t_emb = t_emb.to(dtype=sample.dtype)
|
941 |
-
|
942 |
-
emb = self.time_embedding(t_emb, timestep_cond)
|
943 |
-
aug_emb = None
|
944 |
-
|
945 |
-
if self.class_embedding is not None:
|
946 |
-
if class_labels is None:
|
947 |
-
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
948 |
-
|
949 |
-
if self.config.class_embed_type == "timestep":
|
950 |
-
class_labels = self.time_proj(class_labels)
|
951 |
-
|
952 |
-
# `Timesteps` does not contain any weights and will always return f32 tensors
|
953 |
-
# there might be better ways to encapsulate this.
|
954 |
-
class_labels = class_labels.to(dtype=sample.dtype)
|
955 |
-
|
956 |
-
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
957 |
-
|
958 |
-
if self.config.class_embeddings_concat:
|
959 |
-
emb = torch.cat([emb, class_emb], dim=-1)
|
960 |
-
else:
|
961 |
-
emb = emb + class_emb
|
962 |
-
|
963 |
-
if self.config.addition_embed_type == "text":
|
964 |
-
aug_emb = self.add_embedding(encoder_hidden_states)
|
965 |
-
elif self.config.addition_embed_type == "text_image":
|
966 |
-
# Kandinsky 2.1 - style
|
967 |
-
if "image_embeds" not in added_cond_kwargs:
|
968 |
-
raise ValueError(
|
969 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
970 |
-
)
|
971 |
-
|
972 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
973 |
-
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
974 |
-
aug_emb = self.add_embedding(text_embs, image_embs)
|
975 |
-
elif self.config.addition_embed_type == "text_time":
|
976 |
-
# SDXL - style
|
977 |
-
if "text_embeds" not in added_cond_kwargs:
|
978 |
-
raise ValueError(
|
979 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
980 |
-
)
|
981 |
-
text_embeds = added_cond_kwargs.get("text_embeds")
|
982 |
-
if "time_ids" not in added_cond_kwargs:
|
983 |
-
raise ValueError(
|
984 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
985 |
-
)
|
986 |
-
time_ids = added_cond_kwargs.get("time_ids")
|
987 |
-
time_embeds = self.add_time_proj(time_ids.flatten())
|
988 |
-
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
989 |
-
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
990 |
-
add_embeds = add_embeds.to(emb.dtype)
|
991 |
-
aug_emb = self.add_embedding(add_embeds)
|
992 |
-
elif self.config.addition_embed_type == "image":
|
993 |
-
# Kandinsky 2.2 - style
|
994 |
-
if "image_embeds" not in added_cond_kwargs:
|
995 |
-
raise ValueError(
|
996 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
997 |
-
)
|
998 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
999 |
-
aug_emb = self.add_embedding(image_embs)
|
1000 |
-
elif self.config.addition_embed_type == "image_hint":
|
1001 |
-
# Kandinsky 2.2 - style
|
1002 |
-
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1003 |
-
raise ValueError(
|
1004 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1005 |
-
)
|
1006 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
1007 |
-
hint = added_cond_kwargs.get("hint")
|
1008 |
-
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1009 |
-
sample = torch.cat([sample, hint], dim=1)
|
1010 |
-
|
1011 |
-
emb = emb + aug_emb if aug_emb is not None else emb
|
1012 |
-
|
1013 |
-
if self.time_embed_act is not None:
|
1014 |
-
emb = self.time_embed_act(emb)
|
1015 |
-
|
1016 |
-
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1017 |
-
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1018 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1019 |
-
# Kadinsky 2.1 - style
|
1020 |
-
if "image_embeds" not in added_cond_kwargs:
|
1021 |
-
raise ValueError(
|
1022 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1023 |
-
)
|
1024 |
-
|
1025 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1026 |
-
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1027 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1028 |
-
# Kandinsky 2.2 - style
|
1029 |
-
if "image_embeds" not in added_cond_kwargs:
|
1030 |
-
raise ValueError(
|
1031 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1032 |
-
)
|
1033 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1034 |
-
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1035 |
-
# 2. pre-process
|
1036 |
-
sample = self.conv_in(sample)
|
1037 |
-
|
1038 |
-
# 2.5 GLIGEN position net
|
1039 |
-
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1040 |
-
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1041 |
-
gligen_args = cross_attention_kwargs.pop("gligen")
|
1042 |
-
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1043 |
-
|
1044 |
-
# For Vton
|
1045 |
-
spatial_attn_inputs = []
|
1046 |
-
|
1047 |
-
# 3. down
|
1048 |
-
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1049 |
-
if USE_PEFT_BACKEND:
|
1050 |
-
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1051 |
-
scale_lora_layers(self, lora_scale)
|
1052 |
-
|
1053 |
-
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1054 |
-
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1055 |
-
is_adapter = down_intrablock_additional_residuals is not None
|
1056 |
-
# maintain backward compatibility for legacy usage, where
|
1057 |
-
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1058 |
-
# but can only use one or the other
|
1059 |
-
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1060 |
-
deprecate(
|
1061 |
-
"T2I should not use down_block_additional_residuals",
|
1062 |
-
"1.3.0",
|
1063 |
-
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1064 |
-
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1065 |
-
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1066 |
-
standard_warn=False,
|
1067 |
-
)
|
1068 |
-
down_intrablock_additional_residuals = down_block_additional_residuals
|
1069 |
-
is_adapter = True
|
1070 |
-
|
1071 |
-
down_block_res_samples = (sample,)
|
1072 |
-
for downsample_block in self.down_blocks:
|
1073 |
-
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1074 |
-
# For t2i-adapter CrossAttnDownBlock2D
|
1075 |
-
additional_residuals = {}
|
1076 |
-
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1077 |
-
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1078 |
-
|
1079 |
-
sample, res_samples, spatial_attn_inputs = downsample_block(
|
1080 |
-
hidden_states=sample,
|
1081 |
-
spatial_attn_inputs=spatial_attn_inputs,
|
1082 |
-
temb=emb,
|
1083 |
-
encoder_hidden_states=encoder_hidden_states,
|
1084 |
-
attention_mask=attention_mask,
|
1085 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1086 |
-
encoder_attention_mask=encoder_attention_mask,
|
1087 |
-
**additional_residuals,
|
1088 |
-
)
|
1089 |
-
else:
|
1090 |
-
sample, res_samples = downsample_block(
|
1091 |
-
hidden_states=sample,
|
1092 |
-
temb=emb,
|
1093 |
-
scale=lora_scale,
|
1094 |
-
)
|
1095 |
-
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1096 |
-
sample += down_intrablock_additional_residuals.pop(0)
|
1097 |
-
|
1098 |
-
down_block_res_samples += res_samples
|
1099 |
-
|
1100 |
-
# if is_controlnet:
|
1101 |
-
# new_down_block_res_samples = ()
|
1102 |
-
|
1103 |
-
# for down_block_res_sample, down_block_additional_residual in zip(
|
1104 |
-
# down_block_res_samples, down_block_additional_residuals
|
1105 |
-
# ):
|
1106 |
-
# down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1107 |
-
# new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1108 |
-
|
1109 |
-
# down_block_res_samples = new_down_block_res_samples
|
1110 |
-
|
1111 |
-
# 4. mid
|
1112 |
-
if self.mid_block is not None:
|
1113 |
-
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1114 |
-
sample, spatial_attn_inputs = self.mid_block(
|
1115 |
-
sample,
|
1116 |
-
spatial_attn_inputs=spatial_attn_inputs,
|
1117 |
-
temb=emb,
|
1118 |
-
encoder_hidden_states=encoder_hidden_states,
|
1119 |
-
attention_mask=attention_mask,
|
1120 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1121 |
-
encoder_attention_mask=encoder_attention_mask,
|
1122 |
-
)
|
1123 |
-
else:
|
1124 |
-
sample = self.mid_block(sample, emb)
|
1125 |
-
|
1126 |
-
# To support T2I-Adapter-XL
|
1127 |
-
if (
|
1128 |
-
is_adapter
|
1129 |
-
and len(down_intrablock_additional_residuals) > 0
|
1130 |
-
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1131 |
-
):
|
1132 |
-
sample += down_intrablock_additional_residuals.pop(0)
|
1133 |
-
|
1134 |
-
if is_controlnet:
|
1135 |
-
sample = sample + mid_block_additional_residual
|
1136 |
-
|
1137 |
-
# 5. up
|
1138 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
1139 |
-
is_final_block = i == len(self.up_blocks) - 1
|
1140 |
-
|
1141 |
-
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1142 |
-
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1143 |
-
|
1144 |
-
# if we have not reached the final block and need to forward the
|
1145 |
-
# upsample size, we do it here
|
1146 |
-
if not is_final_block and forward_upsample_size:
|
1147 |
-
upsample_size = down_block_res_samples[-1].shape[2:]
|
1148 |
-
|
1149 |
-
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1150 |
-
sample, spatial_attn_inputs = upsample_block(
|
1151 |
-
hidden_states=sample,
|
1152 |
-
spatial_attn_inputs=spatial_attn_inputs,
|
1153 |
-
temb=emb,
|
1154 |
-
res_hidden_states_tuple=res_samples,
|
1155 |
-
encoder_hidden_states=encoder_hidden_states,
|
1156 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1157 |
-
upsample_size=upsample_size,
|
1158 |
-
attention_mask=attention_mask,
|
1159 |
-
encoder_attention_mask=encoder_attention_mask,
|
1160 |
-
)
|
1161 |
-
else:
|
1162 |
-
sample = upsample_block(
|
1163 |
-
hidden_states=sample,
|
1164 |
-
temb=emb,
|
1165 |
-
res_hidden_states_tuple=res_samples,
|
1166 |
-
upsample_size=upsample_size,
|
1167 |
-
scale=lora_scale,
|
1168 |
-
)
|
1169 |
-
|
1170 |
-
# 6. post-process
|
1171 |
-
if self.conv_norm_out:
|
1172 |
-
sample = self.conv_norm_out(sample)
|
1173 |
-
sample = self.conv_act(sample)
|
1174 |
-
sample = self.conv_out(sample)
|
1175 |
-
|
1176 |
-
if USE_PEFT_BACKEND:
|
1177 |
-
# remove `lora_scale` from each PEFT layer
|
1178 |
-
unscale_lora_layers(self, lora_scale)
|
1179 |
-
|
1180 |
-
if not return_dict:
|
1181 |
-
return (sample,), spatial_attn_inputs
|
1182 |
-
|
1183 |
-
return UNet2DConditionOutput(sample=sample), spatial_attn_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ootd/pipelines_ootd/unet_vton_2d_blocks.py
DELETED
The diff for this file is too large to render.
See raw diff
|
|
ootd/pipelines_ootd/unet_vton_2d_condition.py
DELETED
@@ -1,1183 +0,0 @@
|
|
1 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
-
from dataclasses import dataclass
|
17 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn as nn
|
21 |
-
import torch.utils.checkpoint
|
22 |
-
|
23 |
-
from .unet_vton_2d_blocks import (
|
24 |
-
UNetMidBlock2D,
|
25 |
-
UNetMidBlock2DCrossAttn,
|
26 |
-
UNetMidBlock2DSimpleCrossAttn,
|
27 |
-
get_down_block,
|
28 |
-
get_up_block,
|
29 |
-
)
|
30 |
-
|
31 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
32 |
-
from diffusers.loaders import UNet2DConditionLoadersMixin
|
33 |
-
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
34 |
-
from diffusers.models.activations import get_activation
|
35 |
-
from diffusers.models.attention_processor import (
|
36 |
-
ADDED_KV_ATTENTION_PROCESSORS,
|
37 |
-
CROSS_ATTENTION_PROCESSORS,
|
38 |
-
AttentionProcessor,
|
39 |
-
AttnAddedKVProcessor,
|
40 |
-
AttnProcessor,
|
41 |
-
)
|
42 |
-
from diffusers.models.embeddings import (
|
43 |
-
GaussianFourierProjection,
|
44 |
-
ImageHintTimeEmbedding,
|
45 |
-
ImageProjection,
|
46 |
-
ImageTimeEmbedding,
|
47 |
-
PositionNet,
|
48 |
-
TextImageProjection,
|
49 |
-
TextImageTimeEmbedding,
|
50 |
-
TextTimeEmbedding,
|
51 |
-
TimestepEmbedding,
|
52 |
-
Timesteps,
|
53 |
-
)
|
54 |
-
from diffusers.models.modeling_utils import ModelMixin
|
55 |
-
# from ..diffusers.src.diffusers.models.unet_2d_blocks import (
|
56 |
-
# UNetMidBlock2D,
|
57 |
-
# UNetMidBlock2DCrossAttn,
|
58 |
-
# UNetMidBlock2DSimpleCrossAttn,
|
59 |
-
# get_down_block,
|
60 |
-
# get_up_block,
|
61 |
-
# )
|
62 |
-
|
63 |
-
|
64 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
65 |
-
|
66 |
-
|
67 |
-
@dataclass
|
68 |
-
class UNet2DConditionOutput(BaseOutput):
|
69 |
-
"""
|
70 |
-
The output of [`UNet2DConditionModel`].
|
71 |
-
|
72 |
-
Args:
|
73 |
-
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
74 |
-
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
75 |
-
"""
|
76 |
-
|
77 |
-
sample: torch.FloatTensor = None
|
78 |
-
|
79 |
-
|
80 |
-
class UNetVton2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
81 |
-
r"""
|
82 |
-
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
83 |
-
shaped output.
|
84 |
-
|
85 |
-
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
86 |
-
for all models (such as downloading or saving).
|
87 |
-
|
88 |
-
Parameters:
|
89 |
-
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
90 |
-
Height and width of input/output sample.
|
91 |
-
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
92 |
-
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
93 |
-
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
94 |
-
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
95 |
-
Whether to flip the sin to cos in the time embedding.
|
96 |
-
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
97 |
-
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
98 |
-
The tuple of downsample blocks to use.
|
99 |
-
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
100 |
-
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
101 |
-
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
102 |
-
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
103 |
-
The tuple of upsample blocks to use.
|
104 |
-
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
105 |
-
Whether to include self-attention in the basic transformer blocks, see
|
106 |
-
[`~models.attention.BasicTransformerBlock`].
|
107 |
-
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
108 |
-
The tuple of output channels for each block.
|
109 |
-
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
110 |
-
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
111 |
-
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
112 |
-
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
113 |
-
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
114 |
-
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
115 |
-
If `None`, normalization and activation layers is skipped in post-processing.
|
116 |
-
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
117 |
-
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
118 |
-
The dimension of the cross attention features.
|
119 |
-
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
120 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
121 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
122 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
123 |
-
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
124 |
-
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
125 |
-
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
126 |
-
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
127 |
-
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
128 |
-
encoder_hid_dim (`int`, *optional*, defaults to None):
|
129 |
-
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
130 |
-
dimension to `cross_attention_dim`.
|
131 |
-
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
132 |
-
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
133 |
-
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
134 |
-
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
135 |
-
num_attention_heads (`int`, *optional*):
|
136 |
-
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
137 |
-
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
138 |
-
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
139 |
-
class_embed_type (`str`, *optional*, defaults to `None`):
|
140 |
-
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
141 |
-
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
142 |
-
addition_embed_type (`str`, *optional*, defaults to `None`):
|
143 |
-
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
144 |
-
"text". "text" will use the `TextTimeEmbedding` layer.
|
145 |
-
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
146 |
-
Dimension for the timestep embeddings.
|
147 |
-
num_class_embeds (`int`, *optional*, defaults to `None`):
|
148 |
-
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
149 |
-
class conditioning with `class_embed_type` equal to `None`.
|
150 |
-
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
151 |
-
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
152 |
-
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
153 |
-
An optional override for the dimension of the projected time embedding.
|
154 |
-
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
155 |
-
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
156 |
-
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
157 |
-
timestep_post_act (`str`, *optional*, defaults to `None`):
|
158 |
-
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
159 |
-
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
160 |
-
The dimension of `cond_proj` layer in the timestep embedding.
|
161 |
-
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
162 |
-
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
163 |
-
*optional*): The dimension of the `class_labels` input when
|
164 |
-
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
165 |
-
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
166 |
-
embeddings with the class embeddings.
|
167 |
-
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
168 |
-
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
169 |
-
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
170 |
-
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
171 |
-
otherwise.
|
172 |
-
"""
|
173 |
-
|
174 |
-
_supports_gradient_checkpointing = True
|
175 |
-
|
176 |
-
@register_to_config
|
177 |
-
def __init__(
|
178 |
-
self,
|
179 |
-
sample_size: Optional[int] = None,
|
180 |
-
in_channels: int = 4,
|
181 |
-
out_channels: int = 4,
|
182 |
-
center_input_sample: bool = False,
|
183 |
-
flip_sin_to_cos: bool = True,
|
184 |
-
freq_shift: int = 0,
|
185 |
-
down_block_types: Tuple[str] = (
|
186 |
-
"CrossAttnDownBlock2D",
|
187 |
-
"CrossAttnDownBlock2D",
|
188 |
-
"CrossAttnDownBlock2D",
|
189 |
-
"DownBlock2D",
|
190 |
-
),
|
191 |
-
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
192 |
-
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
193 |
-
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
194 |
-
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
195 |
-
layers_per_block: Union[int, Tuple[int]] = 2,
|
196 |
-
downsample_padding: int = 1,
|
197 |
-
mid_block_scale_factor: float = 1,
|
198 |
-
dropout: float = 0.0,
|
199 |
-
act_fn: str = "silu",
|
200 |
-
norm_num_groups: Optional[int] = 32,
|
201 |
-
norm_eps: float = 1e-5,
|
202 |
-
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
203 |
-
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
204 |
-
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
205 |
-
encoder_hid_dim: Optional[int] = None,
|
206 |
-
encoder_hid_dim_type: Optional[str] = None,
|
207 |
-
attention_head_dim: Union[int, Tuple[int]] = 8,
|
208 |
-
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
209 |
-
dual_cross_attention: bool = False,
|
210 |
-
use_linear_projection: bool = False,
|
211 |
-
class_embed_type: Optional[str] = None,
|
212 |
-
addition_embed_type: Optional[str] = None,
|
213 |
-
addition_time_embed_dim: Optional[int] = None,
|
214 |
-
num_class_embeds: Optional[int] = None,
|
215 |
-
upcast_attention: bool = False,
|
216 |
-
resnet_time_scale_shift: str = "default",
|
217 |
-
resnet_skip_time_act: bool = False,
|
218 |
-
resnet_out_scale_factor: int = 1.0,
|
219 |
-
time_embedding_type: str = "positional",
|
220 |
-
time_embedding_dim: Optional[int] = None,
|
221 |
-
time_embedding_act_fn: Optional[str] = None,
|
222 |
-
timestep_post_act: Optional[str] = None,
|
223 |
-
time_cond_proj_dim: Optional[int] = None,
|
224 |
-
conv_in_kernel: int = 3,
|
225 |
-
conv_out_kernel: int = 3,
|
226 |
-
projection_class_embeddings_input_dim: Optional[int] = None,
|
227 |
-
attention_type: str = "default",
|
228 |
-
class_embeddings_concat: bool = False,
|
229 |
-
mid_block_only_cross_attention: Optional[bool] = None,
|
230 |
-
cross_attention_norm: Optional[str] = None,
|
231 |
-
addition_embed_type_num_heads=64,
|
232 |
-
):
|
233 |
-
super().__init__()
|
234 |
-
|
235 |
-
self.sample_size = sample_size
|
236 |
-
|
237 |
-
if num_attention_heads is not None:
|
238 |
-
raise ValueError(
|
239 |
-
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
240 |
-
)
|
241 |
-
|
242 |
-
# If `num_attention_heads` is not defined (which is the case for most models)
|
243 |
-
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
244 |
-
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
245 |
-
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
246 |
-
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
247 |
-
# which is why we correct for the naming here.
|
248 |
-
num_attention_heads = num_attention_heads or attention_head_dim
|
249 |
-
|
250 |
-
# Check inputs
|
251 |
-
if len(down_block_types) != len(up_block_types):
|
252 |
-
raise ValueError(
|
253 |
-
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
254 |
-
)
|
255 |
-
|
256 |
-
if len(block_out_channels) != len(down_block_types):
|
257 |
-
raise ValueError(
|
258 |
-
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
259 |
-
)
|
260 |
-
|
261 |
-
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
262 |
-
raise ValueError(
|
263 |
-
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
264 |
-
)
|
265 |
-
|
266 |
-
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
267 |
-
raise ValueError(
|
268 |
-
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
269 |
-
)
|
270 |
-
|
271 |
-
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
272 |
-
raise ValueError(
|
273 |
-
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
274 |
-
)
|
275 |
-
|
276 |
-
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
277 |
-
raise ValueError(
|
278 |
-
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
279 |
-
)
|
280 |
-
|
281 |
-
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
282 |
-
raise ValueError(
|
283 |
-
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
284 |
-
)
|
285 |
-
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
286 |
-
for layer_number_per_block in transformer_layers_per_block:
|
287 |
-
if isinstance(layer_number_per_block, list):
|
288 |
-
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
289 |
-
|
290 |
-
# input
|
291 |
-
conv_in_padding = (conv_in_kernel - 1) // 2
|
292 |
-
self.conv_in = nn.Conv2d(
|
293 |
-
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
294 |
-
)
|
295 |
-
|
296 |
-
# time
|
297 |
-
if time_embedding_type == "fourier":
|
298 |
-
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
299 |
-
if time_embed_dim % 2 != 0:
|
300 |
-
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
301 |
-
self.time_proj = GaussianFourierProjection(
|
302 |
-
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
303 |
-
)
|
304 |
-
timestep_input_dim = time_embed_dim
|
305 |
-
elif time_embedding_type == "positional":
|
306 |
-
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
307 |
-
|
308 |
-
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
309 |
-
timestep_input_dim = block_out_channels[0]
|
310 |
-
else:
|
311 |
-
raise ValueError(
|
312 |
-
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
313 |
-
)
|
314 |
-
|
315 |
-
self.time_embedding = TimestepEmbedding(
|
316 |
-
timestep_input_dim,
|
317 |
-
time_embed_dim,
|
318 |
-
act_fn=act_fn,
|
319 |
-
post_act_fn=timestep_post_act,
|
320 |
-
cond_proj_dim=time_cond_proj_dim,
|
321 |
-
)
|
322 |
-
|
323 |
-
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
324 |
-
encoder_hid_dim_type = "text_proj"
|
325 |
-
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
326 |
-
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
327 |
-
|
328 |
-
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
329 |
-
raise ValueError(
|
330 |
-
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
331 |
-
)
|
332 |
-
|
333 |
-
if encoder_hid_dim_type == "text_proj":
|
334 |
-
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
335 |
-
elif encoder_hid_dim_type == "text_image_proj":
|
336 |
-
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
337 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
338 |
-
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
339 |
-
self.encoder_hid_proj = TextImageProjection(
|
340 |
-
text_embed_dim=encoder_hid_dim,
|
341 |
-
image_embed_dim=cross_attention_dim,
|
342 |
-
cross_attention_dim=cross_attention_dim,
|
343 |
-
)
|
344 |
-
elif encoder_hid_dim_type == "image_proj":
|
345 |
-
# Kandinsky 2.2
|
346 |
-
self.encoder_hid_proj = ImageProjection(
|
347 |
-
image_embed_dim=encoder_hid_dim,
|
348 |
-
cross_attention_dim=cross_attention_dim,
|
349 |
-
)
|
350 |
-
elif encoder_hid_dim_type is not None:
|
351 |
-
raise ValueError(
|
352 |
-
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
353 |
-
)
|
354 |
-
else:
|
355 |
-
self.encoder_hid_proj = None
|
356 |
-
|
357 |
-
# class embedding
|
358 |
-
if class_embed_type is None and num_class_embeds is not None:
|
359 |
-
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
360 |
-
elif class_embed_type == "timestep":
|
361 |
-
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
362 |
-
elif class_embed_type == "identity":
|
363 |
-
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
364 |
-
elif class_embed_type == "projection":
|
365 |
-
if projection_class_embeddings_input_dim is None:
|
366 |
-
raise ValueError(
|
367 |
-
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
368 |
-
)
|
369 |
-
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
370 |
-
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
371 |
-
# 2. it projects from an arbitrary input dimension.
|
372 |
-
#
|
373 |
-
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
374 |
-
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
375 |
-
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
376 |
-
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
377 |
-
elif class_embed_type == "simple_projection":
|
378 |
-
if projection_class_embeddings_input_dim is None:
|
379 |
-
raise ValueError(
|
380 |
-
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
381 |
-
)
|
382 |
-
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
383 |
-
else:
|
384 |
-
self.class_embedding = None
|
385 |
-
|
386 |
-
if addition_embed_type == "text":
|
387 |
-
if encoder_hid_dim is not None:
|
388 |
-
text_time_embedding_from_dim = encoder_hid_dim
|
389 |
-
else:
|
390 |
-
text_time_embedding_from_dim = cross_attention_dim
|
391 |
-
|
392 |
-
self.add_embedding = TextTimeEmbedding(
|
393 |
-
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
394 |
-
)
|
395 |
-
elif addition_embed_type == "text_image":
|
396 |
-
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
397 |
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
398 |
-
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
399 |
-
self.add_embedding = TextImageTimeEmbedding(
|
400 |
-
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
401 |
-
)
|
402 |
-
elif addition_embed_type == "text_time":
|
403 |
-
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
404 |
-
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
405 |
-
elif addition_embed_type == "image":
|
406 |
-
# Kandinsky 2.2
|
407 |
-
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
408 |
-
elif addition_embed_type == "image_hint":
|
409 |
-
# Kandinsky 2.2 ControlNet
|
410 |
-
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
411 |
-
elif addition_embed_type is not None:
|
412 |
-
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
413 |
-
|
414 |
-
if time_embedding_act_fn is None:
|
415 |
-
self.time_embed_act = None
|
416 |
-
else:
|
417 |
-
self.time_embed_act = get_activation(time_embedding_act_fn)
|
418 |
-
|
419 |
-
self.down_blocks = nn.ModuleList([])
|
420 |
-
self.up_blocks = nn.ModuleList([])
|
421 |
-
|
422 |
-
if isinstance(only_cross_attention, bool):
|
423 |
-
if mid_block_only_cross_attention is None:
|
424 |
-
mid_block_only_cross_attention = only_cross_attention
|
425 |
-
|
426 |
-
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
427 |
-
|
428 |
-
if mid_block_only_cross_attention is None:
|
429 |
-
mid_block_only_cross_attention = False
|
430 |
-
|
431 |
-
if isinstance(num_attention_heads, int):
|
432 |
-
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
433 |
-
|
434 |
-
if isinstance(attention_head_dim, int):
|
435 |
-
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
436 |
-
|
437 |
-
if isinstance(cross_attention_dim, int):
|
438 |
-
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
439 |
-
|
440 |
-
if isinstance(layers_per_block, int):
|
441 |
-
layers_per_block = [layers_per_block] * len(down_block_types)
|
442 |
-
|
443 |
-
if isinstance(transformer_layers_per_block, int):
|
444 |
-
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
445 |
-
|
446 |
-
if class_embeddings_concat:
|
447 |
-
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
448 |
-
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
449 |
-
# regular time embeddings
|
450 |
-
blocks_time_embed_dim = time_embed_dim * 2
|
451 |
-
else:
|
452 |
-
blocks_time_embed_dim = time_embed_dim
|
453 |
-
|
454 |
-
# down
|
455 |
-
output_channel = block_out_channels[0]
|
456 |
-
for i, down_block_type in enumerate(down_block_types):
|
457 |
-
input_channel = output_channel
|
458 |
-
output_channel = block_out_channels[i]
|
459 |
-
is_final_block = i == len(block_out_channels) - 1
|
460 |
-
|
461 |
-
down_block = get_down_block(
|
462 |
-
down_block_type,
|
463 |
-
num_layers=layers_per_block[i],
|
464 |
-
transformer_layers_per_block=transformer_layers_per_block[i],
|
465 |
-
in_channels=input_channel,
|
466 |
-
out_channels=output_channel,
|
467 |
-
temb_channels=blocks_time_embed_dim,
|
468 |
-
add_downsample=not is_final_block,
|
469 |
-
resnet_eps=norm_eps,
|
470 |
-
resnet_act_fn=act_fn,
|
471 |
-
resnet_groups=norm_num_groups,
|
472 |
-
cross_attention_dim=cross_attention_dim[i],
|
473 |
-
num_attention_heads=num_attention_heads[i],
|
474 |
-
downsample_padding=downsample_padding,
|
475 |
-
dual_cross_attention=dual_cross_attention,
|
476 |
-
use_linear_projection=use_linear_projection,
|
477 |
-
only_cross_attention=only_cross_attention[i],
|
478 |
-
upcast_attention=upcast_attention,
|
479 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
480 |
-
attention_type=attention_type,
|
481 |
-
resnet_skip_time_act=resnet_skip_time_act,
|
482 |
-
resnet_out_scale_factor=resnet_out_scale_factor,
|
483 |
-
cross_attention_norm=cross_attention_norm,
|
484 |
-
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
485 |
-
dropout=dropout,
|
486 |
-
)
|
487 |
-
self.down_blocks.append(down_block)
|
488 |
-
|
489 |
-
# mid
|
490 |
-
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
491 |
-
self.mid_block = UNetMidBlock2DCrossAttn(
|
492 |
-
transformer_layers_per_block=transformer_layers_per_block[-1],
|
493 |
-
in_channels=block_out_channels[-1],
|
494 |
-
temb_channels=blocks_time_embed_dim,
|
495 |
-
dropout=dropout,
|
496 |
-
resnet_eps=norm_eps,
|
497 |
-
resnet_act_fn=act_fn,
|
498 |
-
output_scale_factor=mid_block_scale_factor,
|
499 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
500 |
-
cross_attention_dim=cross_attention_dim[-1],
|
501 |
-
num_attention_heads=num_attention_heads[-1],
|
502 |
-
resnet_groups=norm_num_groups,
|
503 |
-
dual_cross_attention=dual_cross_attention,
|
504 |
-
use_linear_projection=use_linear_projection,
|
505 |
-
upcast_attention=upcast_attention,
|
506 |
-
attention_type=attention_type,
|
507 |
-
)
|
508 |
-
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
509 |
-
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
510 |
-
in_channels=block_out_channels[-1],
|
511 |
-
temb_channels=blocks_time_embed_dim,
|
512 |
-
dropout=dropout,
|
513 |
-
resnet_eps=norm_eps,
|
514 |
-
resnet_act_fn=act_fn,
|
515 |
-
output_scale_factor=mid_block_scale_factor,
|
516 |
-
cross_attention_dim=cross_attention_dim[-1],
|
517 |
-
attention_head_dim=attention_head_dim[-1],
|
518 |
-
resnet_groups=norm_num_groups,
|
519 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
520 |
-
skip_time_act=resnet_skip_time_act,
|
521 |
-
only_cross_attention=mid_block_only_cross_attention,
|
522 |
-
cross_attention_norm=cross_attention_norm,
|
523 |
-
)
|
524 |
-
elif mid_block_type == "UNetMidBlock2D":
|
525 |
-
self.mid_block = UNetMidBlock2D(
|
526 |
-
in_channels=block_out_channels[-1],
|
527 |
-
temb_channels=blocks_time_embed_dim,
|
528 |
-
dropout=dropout,
|
529 |
-
num_layers=0,
|
530 |
-
resnet_eps=norm_eps,
|
531 |
-
resnet_act_fn=act_fn,
|
532 |
-
output_scale_factor=mid_block_scale_factor,
|
533 |
-
resnet_groups=norm_num_groups,
|
534 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
535 |
-
add_attention=False,
|
536 |
-
)
|
537 |
-
elif mid_block_type is None:
|
538 |
-
self.mid_block = None
|
539 |
-
else:
|
540 |
-
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
541 |
-
|
542 |
-
# count how many layers upsample the images
|
543 |
-
self.num_upsamplers = 0
|
544 |
-
|
545 |
-
# up
|
546 |
-
reversed_block_out_channels = list(reversed(block_out_channels))
|
547 |
-
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
548 |
-
reversed_layers_per_block = list(reversed(layers_per_block))
|
549 |
-
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
550 |
-
reversed_transformer_layers_per_block = (
|
551 |
-
list(reversed(transformer_layers_per_block))
|
552 |
-
if reverse_transformer_layers_per_block is None
|
553 |
-
else reverse_transformer_layers_per_block
|
554 |
-
)
|
555 |
-
only_cross_attention = list(reversed(only_cross_attention))
|
556 |
-
|
557 |
-
output_channel = reversed_block_out_channels[0]
|
558 |
-
for i, up_block_type in enumerate(up_block_types):
|
559 |
-
is_final_block = i == len(block_out_channels) - 1
|
560 |
-
|
561 |
-
prev_output_channel = output_channel
|
562 |
-
output_channel = reversed_block_out_channels[i]
|
563 |
-
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
564 |
-
|
565 |
-
# add upsample block for all BUT final layer
|
566 |
-
if not is_final_block:
|
567 |
-
add_upsample = True
|
568 |
-
self.num_upsamplers += 1
|
569 |
-
else:
|
570 |
-
add_upsample = False
|
571 |
-
|
572 |
-
up_block = get_up_block(
|
573 |
-
up_block_type,
|
574 |
-
num_layers=reversed_layers_per_block[i] + 1,
|
575 |
-
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
576 |
-
in_channels=input_channel,
|
577 |
-
out_channels=output_channel,
|
578 |
-
prev_output_channel=prev_output_channel,
|
579 |
-
temb_channels=blocks_time_embed_dim,
|
580 |
-
add_upsample=add_upsample,
|
581 |
-
resnet_eps=norm_eps,
|
582 |
-
resnet_act_fn=act_fn,
|
583 |
-
resolution_idx=i,
|
584 |
-
resnet_groups=norm_num_groups,
|
585 |
-
cross_attention_dim=reversed_cross_attention_dim[i],
|
586 |
-
num_attention_heads=reversed_num_attention_heads[i],
|
587 |
-
dual_cross_attention=dual_cross_attention,
|
588 |
-
use_linear_projection=use_linear_projection,
|
589 |
-
only_cross_attention=only_cross_attention[i],
|
590 |
-
upcast_attention=upcast_attention,
|
591 |
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
592 |
-
attention_type=attention_type,
|
593 |
-
resnet_skip_time_act=resnet_skip_time_act,
|
594 |
-
resnet_out_scale_factor=resnet_out_scale_factor,
|
595 |
-
cross_attention_norm=cross_attention_norm,
|
596 |
-
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
597 |
-
dropout=dropout,
|
598 |
-
)
|
599 |
-
self.up_blocks.append(up_block)
|
600 |
-
prev_output_channel = output_channel
|
601 |
-
|
602 |
-
# out
|
603 |
-
if norm_num_groups is not None:
|
604 |
-
self.conv_norm_out = nn.GroupNorm(
|
605 |
-
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
606 |
-
)
|
607 |
-
|
608 |
-
self.conv_act = get_activation(act_fn)
|
609 |
-
|
610 |
-
else:
|
611 |
-
self.conv_norm_out = None
|
612 |
-
self.conv_act = None
|
613 |
-
|
614 |
-
conv_out_padding = (conv_out_kernel - 1) // 2
|
615 |
-
self.conv_out = nn.Conv2d(
|
616 |
-
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
617 |
-
)
|
618 |
-
|
619 |
-
if attention_type in ["gated", "gated-text-image"]:
|
620 |
-
positive_len = 768
|
621 |
-
if isinstance(cross_attention_dim, int):
|
622 |
-
positive_len = cross_attention_dim
|
623 |
-
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
624 |
-
positive_len = cross_attention_dim[0]
|
625 |
-
|
626 |
-
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
627 |
-
self.position_net = PositionNet(
|
628 |
-
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
629 |
-
)
|
630 |
-
|
631 |
-
@property
|
632 |
-
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
633 |
-
r"""
|
634 |
-
Returns:
|
635 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
636 |
-
indexed by its weight name.
|
637 |
-
"""
|
638 |
-
# set recursively
|
639 |
-
processors = {}
|
640 |
-
|
641 |
-
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
642 |
-
if hasattr(module, "get_processor"):
|
643 |
-
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
644 |
-
|
645 |
-
for sub_name, child in module.named_children():
|
646 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
647 |
-
|
648 |
-
return processors
|
649 |
-
|
650 |
-
for name, module in self.named_children():
|
651 |
-
fn_recursive_add_processors(name, module, processors)
|
652 |
-
|
653 |
-
return processors
|
654 |
-
|
655 |
-
def set_attn_processor(
|
656 |
-
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
657 |
-
):
|
658 |
-
r"""
|
659 |
-
Sets the attention processor to use to compute attention.
|
660 |
-
|
661 |
-
Parameters:
|
662 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
663 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
664 |
-
for **all** `Attention` layers.
|
665 |
-
|
666 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
667 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
668 |
-
|
669 |
-
"""
|
670 |
-
count = len(self.attn_processors.keys())
|
671 |
-
|
672 |
-
if isinstance(processor, dict) and len(processor) != count:
|
673 |
-
raise ValueError(
|
674 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
675 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
676 |
-
)
|
677 |
-
|
678 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
679 |
-
if hasattr(module, "set_processor"):
|
680 |
-
if not isinstance(processor, dict):
|
681 |
-
module.set_processor(processor, _remove_lora=_remove_lora)
|
682 |
-
else:
|
683 |
-
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
684 |
-
|
685 |
-
for sub_name, child in module.named_children():
|
686 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
687 |
-
|
688 |
-
for name, module in self.named_children():
|
689 |
-
fn_recursive_attn_processor(name, module, processor)
|
690 |
-
|
691 |
-
def set_default_attn_processor(self):
|
692 |
-
"""
|
693 |
-
Disables custom attention processors and sets the default attention implementation.
|
694 |
-
"""
|
695 |
-
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
696 |
-
processor = AttnAddedKVProcessor()
|
697 |
-
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
698 |
-
processor = AttnProcessor()
|
699 |
-
else:
|
700 |
-
raise ValueError(
|
701 |
-
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
702 |
-
)
|
703 |
-
|
704 |
-
self.set_attn_processor(processor, _remove_lora=True)
|
705 |
-
|
706 |
-
def set_attention_slice(self, slice_size):
|
707 |
-
r"""
|
708 |
-
Enable sliced attention computation.
|
709 |
-
|
710 |
-
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
711 |
-
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
712 |
-
|
713 |
-
Args:
|
714 |
-
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
715 |
-
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
716 |
-
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
717 |
-
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
718 |
-
must be a multiple of `slice_size`.
|
719 |
-
"""
|
720 |
-
sliceable_head_dims = []
|
721 |
-
|
722 |
-
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
723 |
-
if hasattr(module, "set_attention_slice"):
|
724 |
-
sliceable_head_dims.append(module.sliceable_head_dim)
|
725 |
-
|
726 |
-
for child in module.children():
|
727 |
-
fn_recursive_retrieve_sliceable_dims(child)
|
728 |
-
|
729 |
-
# retrieve number of attention layers
|
730 |
-
for module in self.children():
|
731 |
-
fn_recursive_retrieve_sliceable_dims(module)
|
732 |
-
|
733 |
-
num_sliceable_layers = len(sliceable_head_dims)
|
734 |
-
|
735 |
-
if slice_size == "auto":
|
736 |
-
# half the attention head size is usually a good trade-off between
|
737 |
-
# speed and memory
|
738 |
-
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
739 |
-
elif slice_size == "max":
|
740 |
-
# make smallest slice possible
|
741 |
-
slice_size = num_sliceable_layers * [1]
|
742 |
-
|
743 |
-
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
744 |
-
|
745 |
-
if len(slice_size) != len(sliceable_head_dims):
|
746 |
-
raise ValueError(
|
747 |
-
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
748 |
-
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
749 |
-
)
|
750 |
-
|
751 |
-
for i in range(len(slice_size)):
|
752 |
-
size = slice_size[i]
|
753 |
-
dim = sliceable_head_dims[i]
|
754 |
-
if size is not None and size > dim:
|
755 |
-
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
756 |
-
|
757 |
-
# Recursively walk through all the children.
|
758 |
-
# Any children which exposes the set_attention_slice method
|
759 |
-
# gets the message
|
760 |
-
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
761 |
-
if hasattr(module, "set_attention_slice"):
|
762 |
-
module.set_attention_slice(slice_size.pop())
|
763 |
-
|
764 |
-
for child in module.children():
|
765 |
-
fn_recursive_set_attention_slice(child, slice_size)
|
766 |
-
|
767 |
-
reversed_slice_size = list(reversed(slice_size))
|
768 |
-
for module in self.children():
|
769 |
-
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
770 |
-
|
771 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
772 |
-
if hasattr(module, "gradient_checkpointing"):
|
773 |
-
module.gradient_checkpointing = value
|
774 |
-
|
775 |
-
def enable_freeu(self, s1, s2, b1, b2):
|
776 |
-
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
777 |
-
|
778 |
-
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
779 |
-
|
780 |
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
781 |
-
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
782 |
-
|
783 |
-
Args:
|
784 |
-
s1 (`float`):
|
785 |
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
786 |
-
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
787 |
-
s2 (`float`):
|
788 |
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
789 |
-
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
790 |
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
791 |
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
792 |
-
"""
|
793 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
794 |
-
setattr(upsample_block, "s1", s1)
|
795 |
-
setattr(upsample_block, "s2", s2)
|
796 |
-
setattr(upsample_block, "b1", b1)
|
797 |
-
setattr(upsample_block, "b2", b2)
|
798 |
-
|
799 |
-
def disable_freeu(self):
|
800 |
-
"""Disables the FreeU mechanism."""
|
801 |
-
freeu_keys = {"s1", "s2", "b1", "b2"}
|
802 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
803 |
-
for k in freeu_keys:
|
804 |
-
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
805 |
-
setattr(upsample_block, k, None)
|
806 |
-
|
807 |
-
def forward(
|
808 |
-
self,
|
809 |
-
sample: torch.FloatTensor,
|
810 |
-
spatial_attn_inputs,
|
811 |
-
timestep: Union[torch.Tensor, float, int],
|
812 |
-
encoder_hidden_states: torch.Tensor,
|
813 |
-
class_labels: Optional[torch.Tensor] = None,
|
814 |
-
timestep_cond: Optional[torch.Tensor] = None,
|
815 |
-
attention_mask: Optional[torch.Tensor] = None,
|
816 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
817 |
-
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
818 |
-
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
819 |
-
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
820 |
-
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
821 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
822 |
-
return_dict: bool = True,
|
823 |
-
) -> Union[UNet2DConditionOutput, Tuple]:
|
824 |
-
r"""
|
825 |
-
The [`UNet2DConditionModel`] forward method.
|
826 |
-
|
827 |
-
Args:
|
828 |
-
sample (`torch.FloatTensor`):
|
829 |
-
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
830 |
-
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
831 |
-
encoder_hidden_states (`torch.FloatTensor`):
|
832 |
-
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
833 |
-
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
834 |
-
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
835 |
-
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
836 |
-
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
837 |
-
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
838 |
-
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
839 |
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
840 |
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
841 |
-
negative values to the attention scores corresponding to "discard" tokens.
|
842 |
-
cross_attention_kwargs (`dict`, *optional*):
|
843 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
844 |
-
`self.processor` in
|
845 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
846 |
-
added_cond_kwargs: (`dict`, *optional*):
|
847 |
-
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
848 |
-
are passed along to the UNet blocks.
|
849 |
-
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
850 |
-
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
851 |
-
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
852 |
-
A tensor that if specified is added to the residual of the middle unet block.
|
853 |
-
encoder_attention_mask (`torch.Tensor`):
|
854 |
-
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
855 |
-
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
856 |
-
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
857 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
858 |
-
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
859 |
-
tuple.
|
860 |
-
cross_attention_kwargs (`dict`, *optional*):
|
861 |
-
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
862 |
-
added_cond_kwargs: (`dict`, *optional*):
|
863 |
-
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
864 |
-
are passed along to the UNet blocks.
|
865 |
-
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
866 |
-
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
867 |
-
example from ControlNet side model(s)
|
868 |
-
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
869 |
-
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
870 |
-
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
871 |
-
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
872 |
-
|
873 |
-
Returns:
|
874 |
-
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
875 |
-
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
876 |
-
a `tuple` is returned where the first element is the sample tensor.
|
877 |
-
"""
|
878 |
-
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
879 |
-
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
880 |
-
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
881 |
-
# on the fly if necessary.
|
882 |
-
default_overall_up_factor = 2**self.num_upsamplers
|
883 |
-
|
884 |
-
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
885 |
-
forward_upsample_size = False
|
886 |
-
upsample_size = None
|
887 |
-
|
888 |
-
for dim in sample.shape[-2:]:
|
889 |
-
if dim % default_overall_up_factor != 0:
|
890 |
-
# Forward upsample size to force interpolation output size.
|
891 |
-
forward_upsample_size = True
|
892 |
-
break
|
893 |
-
|
894 |
-
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
895 |
-
# expects mask of shape:
|
896 |
-
# [batch, key_tokens]
|
897 |
-
# adds singleton query_tokens dimension:
|
898 |
-
# [batch, 1, key_tokens]
|
899 |
-
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
900 |
-
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
901 |
-
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
902 |
-
if attention_mask is not None:
|
903 |
-
# assume that mask is expressed as:
|
904 |
-
# (1 = keep, 0 = discard)
|
905 |
-
# convert mask into a bias that can be added to attention scores:
|
906 |
-
# (keep = +0, discard = -10000.0)
|
907 |
-
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
908 |
-
attention_mask = attention_mask.unsqueeze(1)
|
909 |
-
|
910 |
-
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
911 |
-
if encoder_attention_mask is not None:
|
912 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
913 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
914 |
-
|
915 |
-
# 0. center input if necessary
|
916 |
-
if self.config.center_input_sample:
|
917 |
-
sample = 2 * sample - 1.0
|
918 |
-
|
919 |
-
# 1. time
|
920 |
-
timesteps = timestep
|
921 |
-
if not torch.is_tensor(timesteps):
|
922 |
-
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
923 |
-
# This would be a good case for the `match` statement (Python 3.10+)
|
924 |
-
is_mps = sample.device.type == "mps"
|
925 |
-
if isinstance(timestep, float):
|
926 |
-
dtype = torch.float32 if is_mps else torch.float64
|
927 |
-
else:
|
928 |
-
dtype = torch.int32 if is_mps else torch.int64
|
929 |
-
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
930 |
-
elif len(timesteps.shape) == 0:
|
931 |
-
timesteps = timesteps[None].to(sample.device)
|
932 |
-
|
933 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
934 |
-
timesteps = timesteps.expand(sample.shape[0])
|
935 |
-
|
936 |
-
t_emb = self.time_proj(timesteps)
|
937 |
-
|
938 |
-
# `Timesteps` does not contain any weights and will always return f32 tensors
|
939 |
-
# but time_embedding might actually be running in fp16. so we need to cast here.
|
940 |
-
# there might be better ways to encapsulate this.
|
941 |
-
t_emb = t_emb.to(dtype=sample.dtype)
|
942 |
-
|
943 |
-
emb = self.time_embedding(t_emb, timestep_cond)
|
944 |
-
aug_emb = None
|
945 |
-
|
946 |
-
if self.class_embedding is not None:
|
947 |
-
if class_labels is None:
|
948 |
-
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
949 |
-
|
950 |
-
if self.config.class_embed_type == "timestep":
|
951 |
-
class_labels = self.time_proj(class_labels)
|
952 |
-
|
953 |
-
# `Timesteps` does not contain any weights and will always return f32 tensors
|
954 |
-
# there might be better ways to encapsulate this.
|
955 |
-
class_labels = class_labels.to(dtype=sample.dtype)
|
956 |
-
|
957 |
-
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
958 |
-
|
959 |
-
if self.config.class_embeddings_concat:
|
960 |
-
emb = torch.cat([emb, class_emb], dim=-1)
|
961 |
-
else:
|
962 |
-
emb = emb + class_emb
|
963 |
-
|
964 |
-
if self.config.addition_embed_type == "text":
|
965 |
-
aug_emb = self.add_embedding(encoder_hidden_states)
|
966 |
-
elif self.config.addition_embed_type == "text_image":
|
967 |
-
# Kandinsky 2.1 - style
|
968 |
-
if "image_embeds" not in added_cond_kwargs:
|
969 |
-
raise ValueError(
|
970 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
971 |
-
)
|
972 |
-
|
973 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
974 |
-
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
975 |
-
aug_emb = self.add_embedding(text_embs, image_embs)
|
976 |
-
elif self.config.addition_embed_type == "text_time":
|
977 |
-
# SDXL - style
|
978 |
-
if "text_embeds" not in added_cond_kwargs:
|
979 |
-
raise ValueError(
|
980 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
981 |
-
)
|
982 |
-
text_embeds = added_cond_kwargs.get("text_embeds")
|
983 |
-
if "time_ids" not in added_cond_kwargs:
|
984 |
-
raise ValueError(
|
985 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
986 |
-
)
|
987 |
-
time_ids = added_cond_kwargs.get("time_ids")
|
988 |
-
time_embeds = self.add_time_proj(time_ids.flatten())
|
989 |
-
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
990 |
-
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
991 |
-
add_embeds = add_embeds.to(emb.dtype)
|
992 |
-
aug_emb = self.add_embedding(add_embeds)
|
993 |
-
elif self.config.addition_embed_type == "image":
|
994 |
-
# Kandinsky 2.2 - style
|
995 |
-
if "image_embeds" not in added_cond_kwargs:
|
996 |
-
raise ValueError(
|
997 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
998 |
-
)
|
999 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
1000 |
-
aug_emb = self.add_embedding(image_embs)
|
1001 |
-
elif self.config.addition_embed_type == "image_hint":
|
1002 |
-
# Kandinsky 2.2 - style
|
1003 |
-
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1004 |
-
raise ValueError(
|
1005 |
-
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1006 |
-
)
|
1007 |
-
image_embs = added_cond_kwargs.get("image_embeds")
|
1008 |
-
hint = added_cond_kwargs.get("hint")
|
1009 |
-
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1010 |
-
sample = torch.cat([sample, hint], dim=1)
|
1011 |
-
|
1012 |
-
emb = emb + aug_emb if aug_emb is not None else emb
|
1013 |
-
|
1014 |
-
if self.time_embed_act is not None:
|
1015 |
-
emb = self.time_embed_act(emb)
|
1016 |
-
|
1017 |
-
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1018 |
-
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1019 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1020 |
-
# Kadinsky 2.1 - style
|
1021 |
-
if "image_embeds" not in added_cond_kwargs:
|
1022 |
-
raise ValueError(
|
1023 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1024 |
-
)
|
1025 |
-
|
1026 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1027 |
-
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1028 |
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1029 |
-
# Kandinsky 2.2 - style
|
1030 |
-
if "image_embeds" not in added_cond_kwargs:
|
1031 |
-
raise ValueError(
|
1032 |
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1033 |
-
)
|
1034 |
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1035 |
-
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1036 |
-
# 2. pre-process
|
1037 |
-
sample = self.conv_in(sample)
|
1038 |
-
|
1039 |
-
# 2.5 GLIGEN position net
|
1040 |
-
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1041 |
-
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1042 |
-
gligen_args = cross_attention_kwargs.pop("gligen")
|
1043 |
-
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1044 |
-
|
1045 |
-
# for spatial attention
|
1046 |
-
spatial_attn_idx = 0
|
1047 |
-
|
1048 |
-
# 3. down
|
1049 |
-
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1050 |
-
if USE_PEFT_BACKEND:
|
1051 |
-
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1052 |
-
scale_lora_layers(self, lora_scale)
|
1053 |
-
|
1054 |
-
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1055 |
-
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1056 |
-
is_adapter = down_intrablock_additional_residuals is not None
|
1057 |
-
# maintain backward compatibility for legacy usage, where
|
1058 |
-
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1059 |
-
# but can only use one or the other
|
1060 |
-
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1061 |
-
deprecate(
|
1062 |
-
"T2I should not use down_block_additional_residuals",
|
1063 |
-
"1.3.0",
|
1064 |
-
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1065 |
-
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1066 |
-
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1067 |
-
standard_warn=False,
|
1068 |
-
)
|
1069 |
-
down_intrablock_additional_residuals = down_block_additional_residuals
|
1070 |
-
is_adapter = True
|
1071 |
-
|
1072 |
-
down_block_res_samples = (sample,)
|
1073 |
-
for downsample_block in self.down_blocks:
|
1074 |
-
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1075 |
-
# For t2i-adapter CrossAttnDownBlock2D
|
1076 |
-
additional_residuals = {}
|
1077 |
-
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1078 |
-
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1079 |
-
|
1080 |
-
sample, res_samples, spatial_attn_inputs, spatial_attn_idx = downsample_block(
|
1081 |
-
hidden_states=sample,
|
1082 |
-
spatial_attn_inputs=spatial_attn_inputs,
|
1083 |
-
spatial_attn_idx=spatial_attn_idx,
|
1084 |
-
temb=emb,
|
1085 |
-
encoder_hidden_states=encoder_hidden_states,
|
1086 |
-
attention_mask=attention_mask,
|
1087 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1088 |
-
encoder_attention_mask=encoder_attention_mask,
|
1089 |
-
**additional_residuals,
|
1090 |
-
)
|
1091 |
-
else:
|
1092 |
-
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
|
1093 |
-
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1094 |
-
sample += down_intrablock_additional_residuals.pop(0)
|
1095 |
-
|
1096 |
-
down_block_res_samples += res_samples
|
1097 |
-
|
1098 |
-
if is_controlnet:
|
1099 |
-
new_down_block_res_samples = ()
|
1100 |
-
|
1101 |
-
for down_block_res_sample, down_block_additional_residual in zip(
|
1102 |
-
down_block_res_samples, down_block_additional_residuals
|
1103 |
-
):
|
1104 |
-
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1105 |
-
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1106 |
-
|
1107 |
-
down_block_res_samples = new_down_block_res_samples
|
1108 |
-
|
1109 |
-
# 4. mid
|
1110 |
-
if self.mid_block is not None:
|
1111 |
-
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1112 |
-
sample, spatial_attn_inputs, spatial_attn_idx = self.mid_block(
|
1113 |
-
sample,
|
1114 |
-
spatial_attn_inputs=spatial_attn_inputs,
|
1115 |
-
spatial_attn_idx=spatial_attn_idx,
|
1116 |
-
temb=emb,
|
1117 |
-
encoder_hidden_states=encoder_hidden_states,
|
1118 |
-
attention_mask=attention_mask,
|
1119 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1120 |
-
encoder_attention_mask=encoder_attention_mask,
|
1121 |
-
)
|
1122 |
-
else:
|
1123 |
-
sample = self.mid_block(sample, emb)
|
1124 |
-
|
1125 |
-
# To support T2I-Adapter-XL
|
1126 |
-
if (
|
1127 |
-
is_adapter
|
1128 |
-
and len(down_intrablock_additional_residuals) > 0
|
1129 |
-
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1130 |
-
):
|
1131 |
-
sample += down_intrablock_additional_residuals.pop(0)
|
1132 |
-
|
1133 |
-
if is_controlnet:
|
1134 |
-
sample = sample + mid_block_additional_residual
|
1135 |
-
|
1136 |
-
# 5. up
|
1137 |
-
for i, upsample_block in enumerate(self.up_blocks):
|
1138 |
-
is_final_block = i == len(self.up_blocks) - 1
|
1139 |
-
|
1140 |
-
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1141 |
-
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1142 |
-
|
1143 |
-
# if we have not reached the final block and need to forward the
|
1144 |
-
# upsample size, we do it here
|
1145 |
-
if not is_final_block and forward_upsample_size:
|
1146 |
-
upsample_size = down_block_res_samples[-1].shape[2:]
|
1147 |
-
|
1148 |
-
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1149 |
-
sample, spatial_attn_inputs, spatial_attn_idx = upsample_block(
|
1150 |
-
hidden_states=sample,
|
1151 |
-
spatial_attn_inputs=spatial_attn_inputs,
|
1152 |
-
spatial_attn_idx=spatial_attn_idx,
|
1153 |
-
temb=emb,
|
1154 |
-
res_hidden_states_tuple=res_samples,
|
1155 |
-
encoder_hidden_states=encoder_hidden_states,
|
1156 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
1157 |
-
upsample_size=upsample_size,
|
1158 |
-
attention_mask=attention_mask,
|
1159 |
-
encoder_attention_mask=encoder_attention_mask,
|
1160 |
-
)
|
1161 |
-
else:
|
1162 |
-
sample = upsample_block(
|
1163 |
-
hidden_states=sample,
|
1164 |
-
temb=emb,
|
1165 |
-
res_hidden_states_tuple=res_samples,
|
1166 |
-
upsample_size=upsample_size,
|
1167 |
-
scale=lora_scale,
|
1168 |
-
)
|
1169 |
-
|
1170 |
-
# 6. post-process
|
1171 |
-
if self.conv_norm_out:
|
1172 |
-
sample = self.conv_norm_out(sample)
|
1173 |
-
sample = self.conv_act(sample)
|
1174 |
-
sample = self.conv_out(sample)
|
1175 |
-
|
1176 |
-
if USE_PEFT_BACKEND:
|
1177 |
-
# remove `lora_scale` from each PEFT layer
|
1178 |
-
unscale_lora_layers(self, lora_scale)
|
1179 |
-
|
1180 |
-
if not return_dict:
|
1181 |
-
return (sample,)
|
1182 |
-
|
1183 |
-
return UNet2DConditionOutput(sample=sample)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|