Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,906 Bytes
689a1f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
from typing import Callable, Dict, Optional, Tuple, Union
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import Conv2d, ShapeSpec, get_norm
from detectron2.structures import ImageList
from detectron2.utils.registry import Registry
from ..backbone import Backbone, build_backbone
from ..postprocessing import sem_seg_postprocess
from .build import META_ARCH_REGISTRY
__all__ = [
"SemanticSegmentor",
"SEM_SEG_HEADS_REGISTRY",
"SemSegFPNHead",
"build_sem_seg_head",
]
SEM_SEG_HEADS_REGISTRY = Registry("SEM_SEG_HEADS")
SEM_SEG_HEADS_REGISTRY.__doc__ = """
Registry for semantic segmentation heads, which make semantic segmentation predictions
from feature maps.
"""
@META_ARCH_REGISTRY.register()
class SemanticSegmentor(nn.Module):
"""
Main class for semantic segmentation architectures.
"""
@configurable
def __init__(
self,
*,
backbone: Backbone,
sem_seg_head: nn.Module,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
sem_seg_head: a module that predicts semantic segmentation from backbone features
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
"""
super().__init__()
self.backbone = backbone
self.sem_seg_head = sem_seg_head
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
@classmethod
def from_config(cls, cfg):
backbone = build_backbone(cfg)
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
return {
"backbone": backbone,
"sem_seg_head": sem_seg_head,
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "sem_seg": semantic segmentation ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
Each dict is the output for one input image.
The dict contains one key "sem_seg" whose value is a
Tensor that represents the
per-pixel segmentation prediced by the head.
The prediction has shape KxHxW that represents the logits of
each class for each pixel.
"""
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(
images,
self.backbone.size_divisibility,
padding_constraints=self.backbone.padding_constraints,
)
features = self.backbone(images.tensor)
if "sem_seg" in batched_inputs[0]:
targets = [x["sem_seg"].to(self.device) for x in batched_inputs]
targets = ImageList.from_tensors(
targets,
self.backbone.size_divisibility,
self.sem_seg_head.ignore_value,
self.backbone.padding_constraints,
).tensor
else:
targets = None
results, losses = self.sem_seg_head(features, targets)
if self.training:
return losses
processed_results = []
for result, input_per_image, image_size in zip(results, batched_inputs, images.image_sizes):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
r = sem_seg_postprocess(result, image_size, height, width)
processed_results.append({"sem_seg": r})
return processed_results
def build_sem_seg_head(cfg, input_shape):
"""
Build a semantic segmentation head from `cfg.MODEL.SEM_SEG_HEAD.NAME`.
"""
name = cfg.MODEL.SEM_SEG_HEAD.NAME
return SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape)
@SEM_SEG_HEADS_REGISTRY.register()
class SemSegFPNHead(nn.Module):
"""
A semantic segmentation head described in :paper:`PanopticFPN`.
It takes a list of FPN features as input, and applies a sequence of
3x3 convs and upsampling to scale all of them to the stride defined by
``common_stride``. Then these features are added and used to make final
predictions by another 1x1 conv layer.
"""
@configurable
def __init__(
self,
input_shape: Dict[str, ShapeSpec],
*,
num_classes: int,
conv_dims: int,
common_stride: int,
loss_weight: float = 1.0,
norm: Optional[Union[str, Callable]] = None,
ignore_value: int = -1,
):
"""
NOTE: this interface is experimental.
Args:
input_shape: shapes (channels and stride) of the input features
num_classes: number of classes to predict
conv_dims: number of output channels for the intermediate conv layers.
common_stride: the common stride that all features will be upscaled to
loss_weight: loss weight
norm (str or callable): normalization for all conv layers
ignore_value: category id to be ignored during training.
"""
super().__init__()
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
if not len(input_shape):
raise ValueError("SemSegFPNHead(input_shape=) cannot be empty!")
self.in_features = [k for k, v in input_shape]
feature_strides = [v.stride for k, v in input_shape]
feature_channels = [v.channels for k, v in input_shape]
self.ignore_value = ignore_value
self.common_stride = common_stride
self.loss_weight = loss_weight
self.scale_heads = []
for in_feature, stride, channels in zip(
self.in_features, feature_strides, feature_channels
):
head_ops = []
head_length = max(1, int(np.log2(stride) - np.log2(self.common_stride)))
for k in range(head_length):
norm_module = get_norm(norm, conv_dims)
conv = Conv2d(
channels if k == 0 else conv_dims,
conv_dims,
kernel_size=3,
stride=1,
padding=1,
bias=not norm,
norm=norm_module,
activation=F.relu,
)
weight_init.c2_msra_fill(conv)
head_ops.append(conv)
if stride != self.common_stride:
head_ops.append(
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
)
self.scale_heads.append(nn.Sequential(*head_ops))
self.add_module(in_feature, self.scale_heads[-1])
self.predictor = Conv2d(conv_dims, num_classes, kernel_size=1, stride=1, padding=0)
weight_init.c2_msra_fill(self.predictor)
@classmethod
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
return {
"input_shape": {
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
},
"ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
"num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
"conv_dims": cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM,
"common_stride": cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE,
"norm": cfg.MODEL.SEM_SEG_HEAD.NORM,
"loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT,
}
def forward(self, features, targets=None):
"""
Returns:
In training, returns (None, dict of losses)
In inference, returns (CxHxW logits, {})
"""
x = self.layers(features)
if self.training:
return None, self.losses(x, targets)
else:
x = F.interpolate(
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
)
return x, {}
def layers(self, features):
for i, f in enumerate(self.in_features):
if i == 0:
x = self.scale_heads[i](features[f])
else:
x = x + self.scale_heads[i](features[f])
x = self.predictor(x)
return x
def losses(self, predictions, targets):
predictions = predictions.float() # https://github.com/pytorch/pytorch/issues/48163
predictions = F.interpolate(
predictions,
scale_factor=self.common_stride,
mode="bilinear",
align_corners=False,
)
loss = F.cross_entropy(
predictions, targets, reduction="mean", ignore_index=self.ignore_value
)
losses = {"loss_sem_seg": loss * self.loss_weight}
return losses
|