File size: 6,768 Bytes
fb9d4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
from typing import List, Optional, Sequence, Tuple
import torch

from detectron2.layers.nms import batched_nms
from detectron2.structures.instances import Instances

from densepose.converters import ToChartResultConverterWithConfidences
from densepose.structures import (
    DensePoseChartResultWithConfidences,
    DensePoseEmbeddingPredictorOutput,
)
from densepose.vis.bounding_box import BoundingBoxVisualizer, ScoredBoundingBoxVisualizer
from densepose.vis.densepose_outputs_vertex import DensePoseOutputsVertexVisualizer
from densepose.vis.densepose_results import DensePoseResultsVisualizer

from .base import CompoundVisualizer

Scores = Sequence[float]
DensePoseChartResultsWithConfidences = List[DensePoseChartResultWithConfidences]


def extract_scores_from_instances(instances: Instances, select=None):
    if instances.has("scores"):
        return instances.scores if select is None else instances.scores[select]
    return None


def extract_boxes_xywh_from_instances(instances: Instances, select=None):
    if instances.has("pred_boxes"):
        boxes_xywh = instances.pred_boxes.tensor.clone()
        boxes_xywh[:, 2] -= boxes_xywh[:, 0]
        boxes_xywh[:, 3] -= boxes_xywh[:, 1]
        return boxes_xywh if select is None else boxes_xywh[select]
    return None


def create_extractor(visualizer: object):
    """
    Create an extractor for the provided visualizer
    """
    if isinstance(visualizer, CompoundVisualizer):
        extractors = [create_extractor(v) for v in visualizer.visualizers]
        return CompoundExtractor(extractors)
    elif isinstance(visualizer, DensePoseResultsVisualizer):
        return DensePoseResultExtractor()
    elif isinstance(visualizer, ScoredBoundingBoxVisualizer):
        return CompoundExtractor([extract_boxes_xywh_from_instances, extract_scores_from_instances])
    elif isinstance(visualizer, BoundingBoxVisualizer):
        return extract_boxes_xywh_from_instances
    elif isinstance(visualizer, DensePoseOutputsVertexVisualizer):
        return DensePoseOutputsExtractor()
    else:
        logger = logging.getLogger(__name__)
        logger.error(f"Could not create extractor for {visualizer}")
        return None


class BoundingBoxExtractor:
    """
    Extracts bounding boxes from instances
    """

    def __call__(self, instances: Instances):
        boxes_xywh = extract_boxes_xywh_from_instances(instances)
        return boxes_xywh


class ScoredBoundingBoxExtractor:
    """
    Extracts bounding boxes from instances
    """

    def __call__(self, instances: Instances, select=None):
        scores = extract_scores_from_instances(instances)
        boxes_xywh = extract_boxes_xywh_from_instances(instances)
        if (scores is None) or (boxes_xywh is None):
            return (boxes_xywh, scores)
        if select is not None:
            scores = scores[select]
            boxes_xywh = boxes_xywh[select]
        return (boxes_xywh, scores)


class DensePoseResultExtractor:
    """
    Extracts DensePose chart result with confidences from instances
    """

    def __call__(
        self, instances: Instances, select=None
    ) -> Tuple[Optional[DensePoseChartResultsWithConfidences], Optional[torch.Tensor]]:
        if instances.has("pred_densepose") and instances.has("pred_boxes"):
            dpout = instances.pred_densepose
            boxes_xyxy = instances.pred_boxes
            boxes_xywh = extract_boxes_xywh_from_instances(instances)
            if select is not None:
                dpout = dpout[select]
                boxes_xyxy = boxes_xyxy[select]
            converter = ToChartResultConverterWithConfidences()
            results = [converter.convert(dpout[i], boxes_xyxy[[i]]) for i in range(len(dpout))]
            return results, boxes_xywh
        else:
            return None, None


class DensePoseOutputsExtractor:
    """
    Extracts DensePose result from instances
    """

    def __call__(
        self,
        instances: Instances,
        select=None,
    ) -> Tuple[
        Optional[DensePoseEmbeddingPredictorOutput], Optional[torch.Tensor], Optional[List[int]]
    ]:
        if not (instances.has("pred_densepose") and instances.has("pred_boxes")):
            return None, None, None

        dpout = instances.pred_densepose
        boxes_xyxy = instances.pred_boxes
        boxes_xywh = extract_boxes_xywh_from_instances(instances)

        if instances.has("pred_classes"):
            classes = instances.pred_classes.tolist()
        else:
            classes = None

        if select is not None:
            dpout = dpout[select]
            boxes_xyxy = boxes_xyxy[select]
            if classes is not None:
                classes = classes[select]

        return dpout, boxes_xywh, classes


class CompoundExtractor:
    """
    Extracts data for CompoundVisualizer
    """

    def __init__(self, extractors):
        self.extractors = extractors

    def __call__(self, instances: Instances, select=None):
        datas = []
        for extractor in self.extractors:
            data = extractor(instances, select)
            datas.append(data)
        return datas


class NmsFilteredExtractor:
    """
    Extracts data in the format accepted by NmsFilteredVisualizer
    """

    def __init__(self, extractor, iou_threshold):
        self.extractor = extractor
        self.iou_threshold = iou_threshold

    def __call__(self, instances: Instances, select=None):
        scores = extract_scores_from_instances(instances)
        boxes_xywh = extract_boxes_xywh_from_instances(instances)
        if boxes_xywh is None:
            return None
        select_local_idx = batched_nms(
            boxes_xywh,
            scores,
            torch.zeros(len(scores), dtype=torch.int32),
            iou_threshold=self.iou_threshold,
        ).squeeze()
        select_local = torch.zeros(len(boxes_xywh), dtype=torch.bool, device=boxes_xywh.device)
        select_local[select_local_idx] = True
        select = select_local if select is None else (select & select_local)
        return self.extractor(instances, select=select)


class ScoreThresholdedExtractor:
    """
    Extracts data in the format accepted by ScoreThresholdedVisualizer
    """

    def __init__(self, extractor, min_score):
        self.extractor = extractor
        self.min_score = min_score

    def __call__(self, instances: Instances, select=None):
        scores = extract_scores_from_instances(instances)
        if scores is None:
            return None
        select_local = scores > self.min_score
        select = select_local if select is None else (select & select_local)
        data = self.extractor(instances, select=select)
        return data