File size: 12,694 Bytes
fb9d4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from typing import List, Optional, Tuple
import cv2
import torch

from densepose.structures import DensePoseDataRelative

from ..structures import DensePoseChartResult
from .base import Boxes, Image, MatrixVisualizer


class DensePoseResultsVisualizer:
    def visualize(
        self,
        image_bgr: Image,
        results_and_boxes_xywh: Tuple[Optional[List[DensePoseChartResult]], Optional[Boxes]],
    ) -> Image:
        densepose_result, boxes_xywh = results_and_boxes_xywh
        if densepose_result is None or boxes_xywh is None:
            return image_bgr

        boxes_xywh = boxes_xywh.cpu().numpy()
        context = self.create_visualization_context(image_bgr)
        for i, result in enumerate(densepose_result):
            iuv_array = torch.cat(
                (result.labels[None].type(torch.float32), result.uv * 255.0)
            ).type(torch.uint8)
            self.visualize_iuv_arr(context, iuv_array.cpu().numpy(), boxes_xywh[i])
        image_bgr = self.context_to_image_bgr(context)
        return image_bgr

    def create_visualization_context(self, image_bgr: Image):
        return image_bgr

    def visualize_iuv_arr(self, context, iuv_arr: np.ndarray, bbox_xywh) -> None:
        pass

    def context_to_image_bgr(self, context):
        return context

    def get_image_bgr_from_context(self, context):
        return context


class DensePoseMaskedColormapResultsVisualizer(DensePoseResultsVisualizer):
    def __init__(
        self,
        data_extractor,
        segm_extractor,
        inplace=True,
        cmap=cv2.COLORMAP_PARULA,
        alpha=0.7,
        val_scale=1.0,
        **kwargs,
    ):
        self.mask_visualizer = MatrixVisualizer(
            inplace=inplace, cmap=cmap, val_scale=val_scale, alpha=alpha
        )
        self.data_extractor = data_extractor
        self.segm_extractor = segm_extractor

    def context_to_image_bgr(self, context):
        return context

    def visualize_iuv_arr(self, context, iuv_arr: np.ndarray, bbox_xywh) -> None:
        image_bgr = self.get_image_bgr_from_context(context)
        matrix = self.data_extractor(iuv_arr)
        segm = self.segm_extractor(iuv_arr)
        mask = np.zeros(matrix.shape, dtype=np.uint8)
        mask[segm > 0] = 1
        image_bgr = self.mask_visualizer.visualize(image_bgr, mask, matrix, bbox_xywh)


def _extract_i_from_iuvarr(iuv_arr):
    return iuv_arr[0, :, :]


def _extract_u_from_iuvarr(iuv_arr):
    return iuv_arr[1, :, :]


def _extract_v_from_iuvarr(iuv_arr):
    return iuv_arr[2, :, :]


class DensePoseResultsMplContourVisualizer(DensePoseResultsVisualizer):
    def __init__(self, levels=10, **kwargs):
        self.levels = levels
        self.plot_args = kwargs

    def create_visualization_context(self, image_bgr: Image):
        import matplotlib.pyplot as plt
        from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas

        context = {}
        context["image_bgr"] = image_bgr
        dpi = 100
        height_inches = float(image_bgr.shape[0]) / dpi
        width_inches = float(image_bgr.shape[1]) / dpi
        fig = plt.figure(figsize=(width_inches, height_inches), dpi=dpi)
        plt.axes([0, 0, 1, 1])
        plt.axis("off")
        context["fig"] = fig
        canvas = FigureCanvas(fig)
        context["canvas"] = canvas
        extent = (0, image_bgr.shape[1], image_bgr.shape[0], 0)
        plt.imshow(image_bgr[:, :, ::-1], extent=extent)
        return context

    def context_to_image_bgr(self, context):
        fig = context["fig"]
        w, h = map(int, fig.get_size_inches() * fig.get_dpi())
        canvas = context["canvas"]
        canvas.draw()
        image_1d = np.fromstring(canvas.tostring_rgb(), dtype="uint8")
        image_rgb = image_1d.reshape(h, w, 3)
        image_bgr = image_rgb[:, :, ::-1].copy()
        return image_bgr

    def visualize_iuv_arr(self, context, iuv_arr: np.ndarray, bbox_xywh: Boxes) -> None:
        import matplotlib.pyplot as plt

        u = _extract_u_from_iuvarr(iuv_arr).astype(float) / 255.0
        v = _extract_v_from_iuvarr(iuv_arr).astype(float) / 255.0
        extent = (
            bbox_xywh[0],
            bbox_xywh[0] + bbox_xywh[2],
            bbox_xywh[1],
            bbox_xywh[1] + bbox_xywh[3],
        )
        plt.contour(u, self.levels, extent=extent, **self.plot_args)
        plt.contour(v, self.levels, extent=extent, **self.plot_args)


class DensePoseResultsCustomContourVisualizer(DensePoseResultsVisualizer):
    """
    Contour visualization using marching squares
    """

    def __init__(self, levels=10, **kwargs):
        # TODO: colormap is hardcoded
        cmap = cv2.COLORMAP_PARULA
        if isinstance(levels, int):
            self.levels = np.linspace(0, 1, levels)
        else:
            self.levels = levels
        if "linewidths" in kwargs:
            self.linewidths = kwargs["linewidths"]
        else:
            self.linewidths = [1] * len(self.levels)
        self.plot_args = kwargs
        img_colors_bgr = cv2.applyColorMap((self.levels * 255).astype(np.uint8), cmap)
        self.level_colors_bgr = [
            [int(v) for v in img_color_bgr.ravel()] for img_color_bgr in img_colors_bgr
        ]

    def visualize_iuv_arr(self, context, iuv_arr: np.ndarray, bbox_xywh: Boxes) -> None:
        image_bgr = self.get_image_bgr_from_context(context)
        segm = _extract_i_from_iuvarr(iuv_arr)
        u = _extract_u_from_iuvarr(iuv_arr).astype(float) / 255.0
        v = _extract_v_from_iuvarr(iuv_arr).astype(float) / 255.0
        self._contours(image_bgr, u, segm, bbox_xywh)
        self._contours(image_bgr, v, segm, bbox_xywh)

    def _contours(self, image_bgr, arr, segm, bbox_xywh):
        for part_idx in range(1, DensePoseDataRelative.N_PART_LABELS + 1):
            mask = segm == part_idx
            if not np.any(mask):
                continue
            arr_min = np.amin(arr[mask])
            arr_max = np.amax(arr[mask])
            I, J = np.nonzero(mask)
            i0 = np.amin(I)
            i1 = np.amax(I) + 1
            j0 = np.amin(J)
            j1 = np.amax(J) + 1
            if (j1 == j0 + 1) or (i1 == i0 + 1):
                continue
            Nw = arr.shape[1] - 1
            Nh = arr.shape[0] - 1
            for level_idx, level in enumerate(self.levels):
                if (level < arr_min) or (level > arr_max):
                    continue
                vp = arr[i0:i1, j0:j1] >= level
                bin_codes = vp[:-1, :-1] + vp[1:, :-1] * 2 + vp[1:, 1:] * 4 + vp[:-1, 1:] * 8
                mp = mask[i0:i1, j0:j1]
                bin_mask_codes = mp[:-1, :-1] + mp[1:, :-1] * 2 + mp[1:, 1:] * 4 + mp[:-1, 1:] * 8
                it = np.nditer(bin_codes, flags=["multi_index"])
                color_bgr = self.level_colors_bgr[level_idx]
                linewidth = self.linewidths[level_idx]
                while not it.finished:
                    if (it[0] != 0) and (it[0] != 15):
                        i, j = it.multi_index
                        if bin_mask_codes[i, j] != 0:
                            self._draw_line(
                                image_bgr,
                                arr,
                                mask,
                                level,
                                color_bgr,
                                linewidth,
                                it[0],
                                it.multi_index,
                                bbox_xywh,
                                Nw,
                                Nh,
                                (i0, j0),
                            )
                    it.iternext()

    def _draw_line(
        self,
        image_bgr,
        arr,
        mask,
        v,
        color_bgr,
        linewidth,
        bin_code,
        multi_idx,
        bbox_xywh,
        Nw,
        Nh,
        offset,
    ):
        lines = self._bin_code_2_lines(arr, v, bin_code, multi_idx, Nw, Nh, offset)
        x0, y0, w, h = bbox_xywh
        x1 = x0 + w
        y1 = y0 + h
        for line in lines:
            x0r, y0r = line[0]
            x1r, y1r = line[1]
            pt0 = (int(x0 + x0r * (x1 - x0)), int(y0 + y0r * (y1 - y0)))
            pt1 = (int(x0 + x1r * (x1 - x0)), int(y0 + y1r * (y1 - y0)))
            cv2.line(image_bgr, pt0, pt1, color_bgr, linewidth)

    def _bin_code_2_lines(self, arr, v, bin_code, multi_idx, Nw, Nh, offset):
        i0, j0 = offset
        i, j = multi_idx
        i += i0
        j += j0
        v0, v1, v2, v3 = arr[i, j], arr[i + 1, j], arr[i + 1, j + 1], arr[i, j + 1]
        x0i = float(j) / Nw
        y0j = float(i) / Nh
        He = 1.0 / Nh
        We = 1.0 / Nw
        if (bin_code == 1) or (bin_code == 14):
            a = (v - v0) / (v1 - v0)
            b = (v - v0) / (v3 - v0)
            pt1 = (x0i, y0j + a * He)
            pt2 = (x0i + b * We, y0j)
            return [(pt1, pt2)]
        elif (bin_code == 2) or (bin_code == 13):
            a = (v - v0) / (v1 - v0)
            b = (v - v1) / (v2 - v1)
            pt1 = (x0i, y0j + a * He)
            pt2 = (x0i + b * We, y0j + He)
            return [(pt1, pt2)]
        elif (bin_code == 3) or (bin_code == 12):
            a = (v - v0) / (v3 - v0)
            b = (v - v1) / (v2 - v1)
            pt1 = (x0i + a * We, y0j)
            pt2 = (x0i + b * We, y0j + He)
            return [(pt1, pt2)]
        elif (bin_code == 4) or (bin_code == 11):
            a = (v - v1) / (v2 - v1)
            b = (v - v3) / (v2 - v3)
            pt1 = (x0i + a * We, y0j + He)
            pt2 = (x0i + We, y0j + b * He)
            return [(pt1, pt2)]
        elif (bin_code == 6) or (bin_code == 9):
            a = (v - v0) / (v1 - v0)
            b = (v - v3) / (v2 - v3)
            pt1 = (x0i, y0j + a * He)
            pt2 = (x0i + We, y0j + b * He)
            return [(pt1, pt2)]
        elif (bin_code == 7) or (bin_code == 8):
            a = (v - v0) / (v3 - v0)
            b = (v - v3) / (v2 - v3)
            pt1 = (x0i + a * We, y0j)
            pt2 = (x0i + We, y0j + b * He)
            return [(pt1, pt2)]
        elif bin_code == 5:
            a1 = (v - v0) / (v1 - v0)
            b1 = (v - v1) / (v2 - v1)
            pt11 = (x0i, y0j + a1 * He)
            pt12 = (x0i + b1 * We, y0j + He)
            a2 = (v - v0) / (v3 - v0)
            b2 = (v - v3) / (v2 - v3)
            pt21 = (x0i + a2 * We, y0j)
            pt22 = (x0i + We, y0j + b2 * He)
            return [(pt11, pt12), (pt21, pt22)]
        elif bin_code == 10:
            a1 = (v - v0) / (v3 - v0)
            b1 = (v - v0) / (v1 - v0)
            pt11 = (x0i + a1 * We, y0j)
            pt12 = (x0i, y0j + b1 * He)
            a2 = (v - v1) / (v2 - v1)
            b2 = (v - v3) / (v2 - v3)
            pt21 = (x0i + a2 * We, y0j + He)
            pt22 = (x0i + We, y0j + b2 * He)
            return [(pt11, pt12), (pt21, pt22)]
        return []


try:
    import matplotlib

    matplotlib.use("Agg")
    DensePoseResultsContourVisualizer = DensePoseResultsMplContourVisualizer
except ModuleNotFoundError:
    logger = logging.getLogger(__name__)
    logger.warning("Could not import matplotlib, using custom contour visualizer")
    DensePoseResultsContourVisualizer = DensePoseResultsCustomContourVisualizer


class DensePoseResultsFineSegmentationVisualizer(DensePoseMaskedColormapResultsVisualizer):
    def __init__(self, inplace=False, cmap=cv2.COLORMAP_PARULA, alpha=1, **kwargs):
        super(DensePoseResultsFineSegmentationVisualizer, self).__init__(
            _extract_i_from_iuvarr,
            _extract_i_from_iuvarr,
            inplace,
            cmap,
            alpha,
            val_scale=255.0 / DensePoseDataRelative.N_PART_LABELS,
            **kwargs,
        )


class DensePoseResultsUVisualizer(DensePoseMaskedColormapResultsVisualizer):
    def __init__(self, inplace=True, cmap=cv2.COLORMAP_PARULA, alpha=0.7, **kwargs):
        super(DensePoseResultsUVisualizer, self).__init__(
            _extract_u_from_iuvarr,
            _extract_i_from_iuvarr,
            inplace,
            cmap,
            alpha,
            val_scale=1.0,
            **kwargs,
        )


class DensePoseResultsVVisualizer(DensePoseMaskedColormapResultsVisualizer):
    def __init__(self, inplace=True, cmap=cv2.COLORMAP_PARULA, alpha=0.7, **kwargs):
        super(DensePoseResultsVVisualizer, self).__init__(
            _extract_v_from_iuvarr,
            _extract_i_from_iuvarr,
            inplace,
            cmap,
            alpha,
            val_scale=1.0,
            **kwargs,
        )