Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,705 Bytes
689a1f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
from unittest import mock
import torch
from detectron2.modeling import poolers
from detectron2.modeling.proposal_generator import rpn
from detectron2.modeling.roi_heads import keypoint_head, mask_head
from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers
from .c10 import (
Caffe2Compatible,
Caffe2FastRCNNOutputsInference,
Caffe2KeypointRCNNInference,
Caffe2MaskRCNNInference,
Caffe2ROIPooler,
Caffe2RPN,
caffe2_fast_rcnn_outputs_inference,
caffe2_keypoint_rcnn_inference,
caffe2_mask_rcnn_inference,
)
class GenericMixin:
pass
class Caffe2CompatibleConverter:
"""
A GenericUpdater which implements the `create_from` interface, by modifying
module object and assign it with another class replaceCls.
"""
def __init__(self, replaceCls):
self.replaceCls = replaceCls
def create_from(self, module):
# update module's class to the new class
assert isinstance(module, torch.nn.Module)
if issubclass(self.replaceCls, GenericMixin):
# replaceCls should act as mixin, create a new class on-the-fly
new_class = type(
"{}MixedWith{}".format(self.replaceCls.__name__, module.__class__.__name__),
(self.replaceCls, module.__class__),
{}, # {"new_method": lambda self: ...},
)
module.__class__ = new_class
else:
# replaceCls is complete class, this allow arbitrary class swap
module.__class__ = self.replaceCls
# initialize Caffe2Compatible
if isinstance(module, Caffe2Compatible):
module.tensor_mode = False
return module
def patch(model, target, updater, *args, **kwargs):
"""
recursively (post-order) update all modules with the target type and its
subclasses, make a initialization/composition/inheritance/... via the
updater.create_from.
"""
for name, module in model.named_children():
model._modules[name] = patch(module, target, updater, *args, **kwargs)
if isinstance(model, target):
return updater.create_from(model, *args, **kwargs)
return model
def patch_generalized_rcnn(model):
ccc = Caffe2CompatibleConverter
model = patch(model, rpn.RPN, ccc(Caffe2RPN))
model = patch(model, poolers.ROIPooler, ccc(Caffe2ROIPooler))
return model
@contextlib.contextmanager
def mock_fastrcnn_outputs_inference(
tensor_mode, check=True, box_predictor_type=FastRCNNOutputLayers
):
with mock.patch.object(
box_predictor_type,
"inference",
autospec=True,
side_effect=Caffe2FastRCNNOutputsInference(tensor_mode),
) as mocked_func:
yield
if check:
assert mocked_func.call_count > 0
@contextlib.contextmanager
def mock_mask_rcnn_inference(tensor_mode, patched_module, check=True):
with mock.patch(
"{}.mask_rcnn_inference".format(patched_module), side_effect=Caffe2MaskRCNNInference()
) as mocked_func:
yield
if check:
assert mocked_func.call_count > 0
@contextlib.contextmanager
def mock_keypoint_rcnn_inference(tensor_mode, patched_module, use_heatmap_max_keypoint, check=True):
with mock.patch(
"{}.keypoint_rcnn_inference".format(patched_module),
side_effect=Caffe2KeypointRCNNInference(use_heatmap_max_keypoint),
) as mocked_func:
yield
if check:
assert mocked_func.call_count > 0
class ROIHeadsPatcher:
def __init__(self, heads, use_heatmap_max_keypoint):
self.heads = heads
self.use_heatmap_max_keypoint = use_heatmap_max_keypoint
self.previous_patched = {}
@contextlib.contextmanager
def mock_roi_heads(self, tensor_mode=True):
"""
Patching several inference functions inside ROIHeads and its subclasses
Args:
tensor_mode (bool): whether the inputs/outputs are caffe2's tensor
format or not. Default to True.
"""
# NOTE: this requries the `keypoint_rcnn_inference` and `mask_rcnn_inference`
# are called inside the same file as BaseXxxHead due to using mock.patch.
kpt_heads_mod = keypoint_head.BaseKeypointRCNNHead.__module__
mask_head_mod = mask_head.BaseMaskRCNNHead.__module__
mock_ctx_managers = [
mock_fastrcnn_outputs_inference(
tensor_mode=tensor_mode,
check=True,
box_predictor_type=type(self.heads.box_predictor),
)
]
if getattr(self.heads, "keypoint_on", False):
mock_ctx_managers += [
mock_keypoint_rcnn_inference(
tensor_mode, kpt_heads_mod, self.use_heatmap_max_keypoint
)
]
if getattr(self.heads, "mask_on", False):
mock_ctx_managers += [mock_mask_rcnn_inference(tensor_mode, mask_head_mod)]
with contextlib.ExitStack() as stack: # python 3.3+
for mgr in mock_ctx_managers:
stack.enter_context(mgr)
yield
def patch_roi_heads(self, tensor_mode=True):
self.previous_patched["box_predictor"] = self.heads.box_predictor.inference
self.previous_patched["keypoint_rcnn"] = keypoint_head.keypoint_rcnn_inference
self.previous_patched["mask_rcnn"] = mask_head.mask_rcnn_inference
def patched_fastrcnn_outputs_inference(predictions, proposal):
return caffe2_fast_rcnn_outputs_inference(
True, self.heads.box_predictor, predictions, proposal
)
self.heads.box_predictor.inference = patched_fastrcnn_outputs_inference
if getattr(self.heads, "keypoint_on", False):
def patched_keypoint_rcnn_inference(pred_keypoint_logits, pred_instances):
return caffe2_keypoint_rcnn_inference(
self.use_heatmap_max_keypoint, pred_keypoint_logits, pred_instances
)
keypoint_head.keypoint_rcnn_inference = patched_keypoint_rcnn_inference
if getattr(self.heads, "mask_on", False):
def patched_mask_rcnn_inference(pred_mask_logits, pred_instances):
return caffe2_mask_rcnn_inference(pred_mask_logits, pred_instances)
mask_head.mask_rcnn_inference = patched_mask_rcnn_inference
def unpatch_roi_heads(self):
self.heads.box_predictor.inference = self.previous_patched["box_predictor"]
keypoint_head.keypoint_rcnn_inference = self.previous_patched["keypoint_rcnn"]
mask_head.mask_rcnn_inference = self.previous_patched["mask_rcnn"]
|