Spaces:
Running
on
Zero
Running
on
Zero
File size: 37,701 Bytes
689a1f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 |
# Copyright (c) Facebook, Inc. and its affiliates.
import inspect
import logging
import numpy as np
from typing import Dict, List, Optional, Tuple
import torch
from torch import nn
from detectron2.config import configurable
from detectron2.layers import ShapeSpec, nonzero_tuple
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou
from detectron2.utils.events import get_event_storage
from detectron2.utils.registry import Registry
from ..backbone.resnet import BottleneckBlock, ResNet
from ..matcher import Matcher
from ..poolers import ROIPooler
from ..proposal_generator.proposal_utils import add_ground_truth_to_proposals
from ..sampling import subsample_labels
from .box_head import build_box_head
from .fast_rcnn import FastRCNNOutputLayers
from .keypoint_head import build_keypoint_head
from .mask_head import build_mask_head
ROI_HEADS_REGISTRY = Registry("ROI_HEADS")
ROI_HEADS_REGISTRY.__doc__ = """
Registry for ROI heads in a generalized R-CNN model.
ROIHeads take feature maps and region proposals, and
perform per-region computation.
The registered object will be called with `obj(cfg, input_shape)`.
The call is expected to return an :class:`ROIHeads`.
"""
logger = logging.getLogger(__name__)
def build_roi_heads(cfg, input_shape):
"""
Build ROIHeads defined by `cfg.MODEL.ROI_HEADS.NAME`.
"""
name = cfg.MODEL.ROI_HEADS.NAME
return ROI_HEADS_REGISTRY.get(name)(cfg, input_shape)
def select_foreground_proposals(
proposals: List[Instances], bg_label: int
) -> Tuple[List[Instances], List[torch.Tensor]]:
"""
Given a list of N Instances (for N images), each containing a `gt_classes` field,
return a list of Instances that contain only instances with `gt_classes != -1 &&
gt_classes != bg_label`.
Args:
proposals (list[Instances]): A list of N Instances, where N is the number of
images in the batch.
bg_label: label index of background class.
Returns:
list[Instances]: N Instances, each contains only the selected foreground instances.
list[Tensor]: N boolean vector, correspond to the selection mask of
each Instances object. True for selected instances.
"""
assert isinstance(proposals, (list, tuple))
assert isinstance(proposals[0], Instances)
assert proposals[0].has("gt_classes")
fg_proposals = []
fg_selection_masks = []
for proposals_per_image in proposals:
gt_classes = proposals_per_image.gt_classes
fg_selection_mask = (gt_classes != -1) & (gt_classes != bg_label)
fg_idxs = fg_selection_mask.nonzero().squeeze(1)
fg_proposals.append(proposals_per_image[fg_idxs])
fg_selection_masks.append(fg_selection_mask)
return fg_proposals, fg_selection_masks
def select_proposals_with_visible_keypoints(proposals: List[Instances]) -> List[Instances]:
"""
Args:
proposals (list[Instances]): a list of N Instances, where N is the
number of images.
Returns:
proposals: only contains proposals with at least one visible keypoint.
Note that this is still slightly different from Detectron.
In Detectron, proposals for training keypoint head are re-sampled from
all the proposals with IOU>threshold & >=1 visible keypoint.
Here, the proposals are first sampled from all proposals with
IOU>threshold, then proposals with no visible keypoint are filtered out.
This strategy seems to make no difference on Detectron and is easier to implement.
"""
ret = []
all_num_fg = []
for proposals_per_image in proposals:
# If empty/unannotated image (hard negatives), skip filtering for train
if len(proposals_per_image) == 0:
ret.append(proposals_per_image)
continue
gt_keypoints = proposals_per_image.gt_keypoints.tensor
# #fg x K x 3
vis_mask = gt_keypoints[:, :, 2] >= 1
xs, ys = gt_keypoints[:, :, 0], gt_keypoints[:, :, 1]
proposal_boxes = proposals_per_image.proposal_boxes.tensor.unsqueeze(dim=1) # #fg x 1 x 4
kp_in_box = (
(xs >= proposal_boxes[:, :, 0])
& (xs <= proposal_boxes[:, :, 2])
& (ys >= proposal_boxes[:, :, 1])
& (ys <= proposal_boxes[:, :, 3])
)
selection = (kp_in_box & vis_mask).any(dim=1)
selection_idxs = nonzero_tuple(selection)[0]
all_num_fg.append(selection_idxs.numel())
ret.append(proposals_per_image[selection_idxs])
storage = get_event_storage()
storage.put_scalar("keypoint_head/num_fg_samples", np.mean(all_num_fg))
return ret
class ROIHeads(torch.nn.Module):
"""
ROIHeads perform all per-region computation in an R-CNN.
It typically contains logic to
1. (in training only) match proposals with ground truth and sample them
2. crop the regions and extract per-region features using proposals
3. make per-region predictions with different heads
It can have many variants, implemented as subclasses of this class.
This base class contains the logic to match/sample proposals.
But it is not necessary to inherit this class if the sampling logic is not needed.
"""
@configurable
def __init__(
self,
*,
num_classes,
batch_size_per_image,
positive_fraction,
proposal_matcher,
proposal_append_gt=True,
):
"""
NOTE: this interface is experimental.
Args:
num_classes (int): number of foreground classes (i.e. background is not included)
batch_size_per_image (int): number of proposals to sample for training
positive_fraction (float): fraction of positive (foreground) proposals
to sample for training.
proposal_matcher (Matcher): matcher that matches proposals and ground truth
proposal_append_gt (bool): whether to include ground truth as proposals as well
"""
super().__init__()
self.batch_size_per_image = batch_size_per_image
self.positive_fraction = positive_fraction
self.num_classes = num_classes
self.proposal_matcher = proposal_matcher
self.proposal_append_gt = proposal_append_gt
@classmethod
def from_config(cls, cfg):
return {
"batch_size_per_image": cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE,
"positive_fraction": cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION,
"num_classes": cfg.MODEL.ROI_HEADS.NUM_CLASSES,
"proposal_append_gt": cfg.MODEL.ROI_HEADS.PROPOSAL_APPEND_GT,
# Matcher to assign box proposals to gt boxes
"proposal_matcher": Matcher(
cfg.MODEL.ROI_HEADS.IOU_THRESHOLDS,
cfg.MODEL.ROI_HEADS.IOU_LABELS,
allow_low_quality_matches=False,
),
}
def _sample_proposals(
self, matched_idxs: torch.Tensor, matched_labels: torch.Tensor, gt_classes: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Based on the matching between N proposals and M groundtruth,
sample the proposals and set their classification labels.
Args:
matched_idxs (Tensor): a vector of length N, each is the best-matched
gt index in [0, M) for each proposal.
matched_labels (Tensor): a vector of length N, the matcher's label
(one of cfg.MODEL.ROI_HEADS.IOU_LABELS) for each proposal.
gt_classes (Tensor): a vector of length M.
Returns:
Tensor: a vector of indices of sampled proposals. Each is in [0, N).
Tensor: a vector of the same length, the classification label for
each sampled proposal. Each sample is labeled as either a category in
[0, num_classes) or the background (num_classes).
"""
has_gt = gt_classes.numel() > 0
# Get the corresponding GT for each proposal
if has_gt:
gt_classes = gt_classes[matched_idxs]
# Label unmatched proposals (0 label from matcher) as background (label=num_classes)
gt_classes[matched_labels == 0] = self.num_classes
# Label ignore proposals (-1 label)
gt_classes[matched_labels == -1] = -1
else:
gt_classes = torch.zeros_like(matched_idxs) + self.num_classes
sampled_fg_idxs, sampled_bg_idxs = subsample_labels(
gt_classes, self.batch_size_per_image, self.positive_fraction, self.num_classes
)
sampled_idxs = torch.cat([sampled_fg_idxs, sampled_bg_idxs], dim=0)
return sampled_idxs, gt_classes[sampled_idxs]
@torch.no_grad()
def label_and_sample_proposals(
self, proposals: List[Instances], targets: List[Instances]
) -> List[Instances]:
"""
Prepare some proposals to be used to train the ROI heads.
It performs box matching between `proposals` and `targets`, and assigns
training labels to the proposals.
It returns ``self.batch_size_per_image`` random samples from proposals and groundtruth
boxes, with a fraction of positives that is no larger than
``self.positive_fraction``.
Args:
See :meth:`ROIHeads.forward`
Returns:
list[Instances]:
length `N` list of `Instances`s containing the proposals
sampled for training. Each `Instances` has the following fields:
- proposal_boxes: the proposal boxes
- gt_boxes: the ground-truth box that the proposal is assigned to
(this is only meaningful if the proposal has a label > 0; if label = 0
then the ground-truth box is random)
Other fields such as "gt_classes", "gt_masks", that's included in `targets`.
"""
# Augment proposals with ground-truth boxes.
# In the case of learned proposals (e.g., RPN), when training starts
# the proposals will be low quality due to random initialization.
# It's possible that none of these initial
# proposals have high enough overlap with the gt objects to be used
# as positive examples for the second stage components (box head,
# cls head, mask head). Adding the gt boxes to the set of proposals
# ensures that the second stage components will have some positive
# examples from the start of training. For RPN, this augmentation improves
# convergence and empirically improves box AP on COCO by about 0.5
# points (under one tested configuration).
if self.proposal_append_gt:
proposals = add_ground_truth_to_proposals(targets, proposals)
proposals_with_gt = []
num_fg_samples = []
num_bg_samples = []
for proposals_per_image, targets_per_image in zip(proposals, targets):
has_gt = len(targets_per_image) > 0
match_quality_matrix = pairwise_iou(
targets_per_image.gt_boxes, proposals_per_image.proposal_boxes
)
matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix)
sampled_idxs, gt_classes = self._sample_proposals(
matched_idxs, matched_labels, targets_per_image.gt_classes
)
# Set target attributes of the sampled proposals:
proposals_per_image = proposals_per_image[sampled_idxs]
proposals_per_image.gt_classes = gt_classes
if has_gt:
sampled_targets = matched_idxs[sampled_idxs]
# We index all the attributes of targets that start with "gt_"
# and have not been added to proposals yet (="gt_classes").
# NOTE: here the indexing waste some compute, because heads
# like masks, keypoints, etc, will filter the proposals again,
# (by foreground/background, or number of keypoints in the image, etc)
# so we essentially index the data twice.
for (trg_name, trg_value) in targets_per_image.get_fields().items():
if trg_name.startswith("gt_") and not proposals_per_image.has(trg_name):
proposals_per_image.set(trg_name, trg_value[sampled_targets])
# If no GT is given in the image, we don't know what a dummy gt value can be.
# Therefore the returned proposals won't have any gt_* fields, except for a
# gt_classes full of background label.
num_bg_samples.append((gt_classes == self.num_classes).sum().item())
num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1])
proposals_with_gt.append(proposals_per_image)
# Log the number of fg/bg samples that are selected for training ROI heads
storage = get_event_storage()
storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples))
storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples))
return proposals_with_gt
def forward(
self,
images: ImageList,
features: Dict[str, torch.Tensor],
proposals: List[Instances],
targets: Optional[List[Instances]] = None,
) -> Tuple[List[Instances], Dict[str, torch.Tensor]]:
"""
Args:
images (ImageList):
features (dict[str,Tensor]): input data as a mapping from feature
map name to tensor. Axis 0 represents the number of images `N` in
the input data; axes 1-3 are channels, height, and width, which may
vary between feature maps (e.g., if a feature pyramid is used).
proposals (list[Instances]): length `N` list of `Instances`. The i-th
`Instances` contains object proposals for the i-th input image,
with fields "proposal_boxes" and "objectness_logits".
targets (list[Instances], optional): length `N` list of `Instances`. The i-th
`Instances` contains the ground-truth per-instance annotations
for the i-th input image. Specify `targets` during training only.
It may have the following fields:
- gt_boxes: the bounding box of each instance.
- gt_classes: the label for each instance with a category ranging in [0, #class].
- gt_masks: PolygonMasks or BitMasks, the ground-truth masks of each instance.
- gt_keypoints: NxKx3, the groud-truth keypoints for each instance.
Returns:
list[Instances]: length `N` list of `Instances` containing the
detected instances. Returned during inference only; may be [] during training.
dict[str->Tensor]:
mapping from a named loss to a tensor storing the loss. Used during training only.
"""
raise NotImplementedError()
@ROI_HEADS_REGISTRY.register()
class Res5ROIHeads(ROIHeads):
"""
The ROIHeads in a typical "C4" R-CNN model, where
the box and mask head share the cropping and
the per-region feature computation by a Res5 block.
See :paper:`ResNet` Appendix A.
"""
@configurable
def __init__(
self,
*,
in_features: List[str],
pooler: ROIPooler,
res5: nn.Module,
box_predictor: nn.Module,
mask_head: Optional[nn.Module] = None,
**kwargs,
):
"""
NOTE: this interface is experimental.
Args:
in_features (list[str]): list of backbone feature map names to use for
feature extraction
pooler (ROIPooler): pooler to extra region features from backbone
res5 (nn.Sequential): a CNN to compute per-region features, to be used by
``box_predictor`` and ``mask_head``. Typically this is a "res5"
block from a ResNet.
box_predictor (nn.Module): make box predictions from the feature.
Should have the same interface as :class:`FastRCNNOutputLayers`.
mask_head (nn.Module): transform features to make mask predictions
"""
super().__init__(**kwargs)
self.in_features = in_features
self.pooler = pooler
if isinstance(res5, (list, tuple)):
res5 = nn.Sequential(*res5)
self.res5 = res5
self.box_predictor = box_predictor
self.mask_on = mask_head is not None
if self.mask_on:
self.mask_head = mask_head
@classmethod
def from_config(cls, cfg, input_shape):
# fmt: off
ret = super().from_config(cfg)
in_features = ret["in_features"] = cfg.MODEL.ROI_HEADS.IN_FEATURES
pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
pooler_scales = (1.0 / input_shape[in_features[0]].stride, )
sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
mask_on = cfg.MODEL.MASK_ON
# fmt: on
assert not cfg.MODEL.KEYPOINT_ON
assert len(in_features) == 1
ret["pooler"] = ROIPooler(
output_size=pooler_resolution,
scales=pooler_scales,
sampling_ratio=sampling_ratio,
pooler_type=pooler_type,
)
# Compatbility with old moco code. Might be useful.
# See notes in StandardROIHeads.from_config
if not inspect.ismethod(cls._build_res5_block):
logger.warning(
"The behavior of _build_res5_block may change. "
"Please do not depend on private methods."
)
cls._build_res5_block = classmethod(cls._build_res5_block)
ret["res5"], out_channels = cls._build_res5_block(cfg)
ret["box_predictor"] = FastRCNNOutputLayers(
cfg, ShapeSpec(channels=out_channels, height=1, width=1)
)
if mask_on:
ret["mask_head"] = build_mask_head(
cfg,
ShapeSpec(channels=out_channels, width=pooler_resolution, height=pooler_resolution),
)
return ret
@classmethod
def _build_res5_block(cls, cfg):
# fmt: off
stage_channel_factor = 2 ** 3 # res5 is 8x res2
num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
bottleneck_channels = num_groups * width_per_group * stage_channel_factor
out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS * stage_channel_factor
stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1
norm = cfg.MODEL.RESNETS.NORM
assert not cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE[-1], \
"Deformable conv is not yet supported in res5 head."
# fmt: on
blocks = ResNet.make_stage(
BottleneckBlock,
3,
stride_per_block=[2, 1, 1],
in_channels=out_channels // 2,
bottleneck_channels=bottleneck_channels,
out_channels=out_channels,
num_groups=num_groups,
norm=norm,
stride_in_1x1=stride_in_1x1,
)
return nn.Sequential(*blocks), out_channels
def _shared_roi_transform(self, features: List[torch.Tensor], boxes: List[Boxes]):
x = self.pooler(features, boxes)
return self.res5(x)
def forward(
self,
images: ImageList,
features: Dict[str, torch.Tensor],
proposals: List[Instances],
targets: Optional[List[Instances]] = None,
):
"""
See :meth:`ROIHeads.forward`.
"""
del images
if self.training:
assert targets
proposals = self.label_and_sample_proposals(proposals, targets)
del targets
proposal_boxes = [x.proposal_boxes for x in proposals]
box_features = self._shared_roi_transform(
[features[f] for f in self.in_features], proposal_boxes
)
predictions = self.box_predictor(box_features.mean(dim=[2, 3]))
if self.training:
del features
losses = self.box_predictor.losses(predictions, proposals)
if self.mask_on:
proposals, fg_selection_masks = select_foreground_proposals(
proposals, self.num_classes
)
# Since the ROI feature transform is shared between boxes and masks,
# we don't need to recompute features. The mask loss is only defined
# on foreground proposals, so we need to select out the foreground
# features.
mask_features = box_features[torch.cat(fg_selection_masks, dim=0)]
del box_features
losses.update(self.mask_head(mask_features, proposals))
return [], losses
else:
pred_instances, _ = self.box_predictor.inference(predictions, proposals)
pred_instances = self.forward_with_given_boxes(features, pred_instances)
return pred_instances, {}
def forward_with_given_boxes(
self, features: Dict[str, torch.Tensor], instances: List[Instances]
) -> List[Instances]:
"""
Use the given boxes in `instances` to produce other (non-box) per-ROI outputs.
Args:
features: same as in `forward()`
instances (list[Instances]): instances to predict other outputs. Expect the keys
"pred_boxes" and "pred_classes" to exist.
Returns:
instances (Instances):
the same `Instances` object, with extra
fields such as `pred_masks` or `pred_keypoints`.
"""
assert not self.training
assert instances[0].has("pred_boxes") and instances[0].has("pred_classes")
if self.mask_on:
feature_list = [features[f] for f in self.in_features]
x = self._shared_roi_transform(feature_list, [x.pred_boxes for x in instances])
return self.mask_head(x, instances)
else:
return instances
@ROI_HEADS_REGISTRY.register()
class StandardROIHeads(ROIHeads):
"""
It's "standard" in a sense that there is no ROI transform sharing
or feature sharing between tasks.
Each head independently processes the input features by each head's
own pooler and head.
This class is used by most models, such as FPN and C5.
To implement more models, you can subclass it and implement a different
:meth:`forward()` or a head.
"""
@configurable
def __init__(
self,
*,
box_in_features: List[str],
box_pooler: ROIPooler,
box_head: nn.Module,
box_predictor: nn.Module,
mask_in_features: Optional[List[str]] = None,
mask_pooler: Optional[ROIPooler] = None,
mask_head: Optional[nn.Module] = None,
keypoint_in_features: Optional[List[str]] = None,
keypoint_pooler: Optional[ROIPooler] = None,
keypoint_head: Optional[nn.Module] = None,
train_on_pred_boxes: bool = False,
**kwargs,
):
"""
NOTE: this interface is experimental.
Args:
box_in_features (list[str]): list of feature names to use for the box head.
box_pooler (ROIPooler): pooler to extra region features for box head
box_head (nn.Module): transform features to make box predictions
box_predictor (nn.Module): make box predictions from the feature.
Should have the same interface as :class:`FastRCNNOutputLayers`.
mask_in_features (list[str]): list of feature names to use for the mask
pooler or mask head. None if not using mask head.
mask_pooler (ROIPooler): pooler to extract region features from image features.
The mask head will then take region features to make predictions.
If None, the mask head will directly take the dict of image features
defined by `mask_in_features`
mask_head (nn.Module): transform features to make mask predictions
keypoint_in_features, keypoint_pooler, keypoint_head: similar to ``mask_*``.
train_on_pred_boxes (bool): whether to use proposal boxes or
predicted boxes from the box head to train other heads.
"""
super().__init__(**kwargs)
# keep self.in_features for backward compatibility
self.in_features = self.box_in_features = box_in_features
self.box_pooler = box_pooler
self.box_head = box_head
self.box_predictor = box_predictor
self.mask_on = mask_in_features is not None
if self.mask_on:
self.mask_in_features = mask_in_features
self.mask_pooler = mask_pooler
self.mask_head = mask_head
self.keypoint_on = keypoint_in_features is not None
if self.keypoint_on:
self.keypoint_in_features = keypoint_in_features
self.keypoint_pooler = keypoint_pooler
self.keypoint_head = keypoint_head
self.train_on_pred_boxes = train_on_pred_boxes
@classmethod
def from_config(cls, cfg, input_shape):
ret = super().from_config(cfg)
ret["train_on_pred_boxes"] = cfg.MODEL.ROI_BOX_HEAD.TRAIN_ON_PRED_BOXES
# Subclasses that have not been updated to use from_config style construction
# may have overridden _init_*_head methods. In this case, those overridden methods
# will not be classmethods and we need to avoid trying to call them here.
# We test for this with ismethod which only returns True for bound methods of cls.
# Such subclasses will need to handle calling their overridden _init_*_head methods.
if inspect.ismethod(cls._init_box_head):
ret.update(cls._init_box_head(cfg, input_shape))
if inspect.ismethod(cls._init_mask_head):
ret.update(cls._init_mask_head(cfg, input_shape))
if inspect.ismethod(cls._init_keypoint_head):
ret.update(cls._init_keypoint_head(cfg, input_shape))
return ret
@classmethod
def _init_box_head(cls, cfg, input_shape):
# fmt: off
in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features)
sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
# fmt: on
# If StandardROIHeads is applied on multiple feature maps (as in FPN),
# then we share the same predictors and therefore the channel counts must be the same
in_channels = [input_shape[f].channels for f in in_features]
# Check all channel counts are equal
assert len(set(in_channels)) == 1, in_channels
in_channels = in_channels[0]
box_pooler = ROIPooler(
output_size=pooler_resolution,
scales=pooler_scales,
sampling_ratio=sampling_ratio,
pooler_type=pooler_type,
)
# Here we split "box head" and "box predictor", which is mainly due to historical reasons.
# They are used together so the "box predictor" layers should be part of the "box head".
# New subclasses of ROIHeads do not need "box predictor"s.
box_head = build_box_head(
cfg, ShapeSpec(channels=in_channels, height=pooler_resolution, width=pooler_resolution)
)
box_predictor = FastRCNNOutputLayers(cfg, box_head.output_shape)
return {
"box_in_features": in_features,
"box_pooler": box_pooler,
"box_head": box_head,
"box_predictor": box_predictor,
}
@classmethod
def _init_mask_head(cls, cfg, input_shape):
if not cfg.MODEL.MASK_ON:
return {}
# fmt: off
in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
pooler_resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION
pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features)
sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO
pooler_type = cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE
# fmt: on
in_channels = [input_shape[f].channels for f in in_features][0]
ret = {"mask_in_features": in_features}
ret["mask_pooler"] = (
ROIPooler(
output_size=pooler_resolution,
scales=pooler_scales,
sampling_ratio=sampling_ratio,
pooler_type=pooler_type,
)
if pooler_type
else None
)
if pooler_type:
shape = ShapeSpec(
channels=in_channels, width=pooler_resolution, height=pooler_resolution
)
else:
shape = {f: input_shape[f] for f in in_features}
ret["mask_head"] = build_mask_head(cfg, shape)
return ret
@classmethod
def _init_keypoint_head(cls, cfg, input_shape):
if not cfg.MODEL.KEYPOINT_ON:
return {}
# fmt: off
in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
pooler_resolution = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION
pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) # noqa
sampling_ratio = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO
pooler_type = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_TYPE
# fmt: on
in_channels = [input_shape[f].channels for f in in_features][0]
ret = {"keypoint_in_features": in_features}
ret["keypoint_pooler"] = (
ROIPooler(
output_size=pooler_resolution,
scales=pooler_scales,
sampling_ratio=sampling_ratio,
pooler_type=pooler_type,
)
if pooler_type
else None
)
if pooler_type:
shape = ShapeSpec(
channels=in_channels, width=pooler_resolution, height=pooler_resolution
)
else:
shape = {f: input_shape[f] for f in in_features}
ret["keypoint_head"] = build_keypoint_head(cfg, shape)
return ret
def forward(
self,
images: ImageList,
features: Dict[str, torch.Tensor],
proposals: List[Instances],
targets: Optional[List[Instances]] = None,
) -> Tuple[List[Instances], Dict[str, torch.Tensor]]:
"""
See :class:`ROIHeads.forward`.
"""
del images
if self.training:
assert targets, "'targets' argument is required during training"
proposals = self.label_and_sample_proposals(proposals, targets)
del targets
if self.training:
losses = self._forward_box(features, proposals)
# Usually the original proposals used by the box head are used by the mask, keypoint
# heads. But when `self.train_on_pred_boxes is True`, proposals will contain boxes
# predicted by the box head.
losses.update(self._forward_mask(features, proposals))
losses.update(self._forward_keypoint(features, proposals))
return proposals, losses
else:
pred_instances = self._forward_box(features, proposals)
# During inference cascaded prediction is used: the mask and keypoints heads are only
# applied to the top scoring box detections.
pred_instances = self.forward_with_given_boxes(features, pred_instances)
return pred_instances, {}
def forward_with_given_boxes(
self, features: Dict[str, torch.Tensor], instances: List[Instances]
) -> List[Instances]:
"""
Use the given boxes in `instances` to produce other (non-box) per-ROI outputs.
This is useful for downstream tasks where a box is known, but need to obtain
other attributes (outputs of other heads).
Test-time augmentation also uses this.
Args:
features: same as in `forward()`
instances (list[Instances]): instances to predict other outputs. Expect the keys
"pred_boxes" and "pred_classes" to exist.
Returns:
list[Instances]:
the same `Instances` objects, with extra
fields such as `pred_masks` or `pred_keypoints`.
"""
assert not self.training
assert instances[0].has("pred_boxes") and instances[0].has("pred_classes")
instances = self._forward_mask(features, instances)
instances = self._forward_keypoint(features, instances)
return instances
def _forward_box(self, features: Dict[str, torch.Tensor], proposals: List[Instances]):
"""
Forward logic of the box prediction branch. If `self.train_on_pred_boxes is True`,
the function puts predicted boxes in the `proposal_boxes` field of `proposals` argument.
Args:
features (dict[str, Tensor]): mapping from feature map names to tensor.
Same as in :meth:`ROIHeads.forward`.
proposals (list[Instances]): the per-image object proposals with
their matching ground truth.
Each has fields "proposal_boxes", and "objectness_logits",
"gt_classes", "gt_boxes".
Returns:
In training, a dict of losses.
In inference, a list of `Instances`, the predicted instances.
"""
features = [features[f] for f in self.box_in_features]
box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals])
box_features = self.box_head(box_features)
predictions = self.box_predictor(box_features)
del box_features
if self.training:
losses = self.box_predictor.losses(predictions, proposals)
# proposals is modified in-place below, so losses must be computed first.
if self.train_on_pred_boxes:
with torch.no_grad():
pred_boxes = self.box_predictor.predict_boxes_for_gt_classes(
predictions, proposals
)
for proposals_per_image, pred_boxes_per_image in zip(proposals, pred_boxes):
proposals_per_image.proposal_boxes = Boxes(pred_boxes_per_image)
return losses
else:
pred_instances, _ = self.box_predictor.inference(predictions, proposals)
return pred_instances
def _forward_mask(self, features: Dict[str, torch.Tensor], instances: List[Instances]):
"""
Forward logic of the mask prediction branch.
Args:
features (dict[str, Tensor]): mapping from feature map names to tensor.
Same as in :meth:`ROIHeads.forward`.
instances (list[Instances]): the per-image instances to train/predict masks.
In training, they can be the proposals.
In inference, they can be the boxes predicted by R-CNN box head.
Returns:
In training, a dict of losses.
In inference, update `instances` with new fields "pred_masks" and return it.
"""
if not self.mask_on:
return {} if self.training else instances
if self.training:
# head is only trained on positive proposals.
instances, _ = select_foreground_proposals(instances, self.num_classes)
if self.mask_pooler is not None:
features = [features[f] for f in self.mask_in_features]
boxes = [x.proposal_boxes if self.training else x.pred_boxes for x in instances]
features = self.mask_pooler(features, boxes)
else:
features = {f: features[f] for f in self.mask_in_features}
return self.mask_head(features, instances)
def _forward_keypoint(self, features: Dict[str, torch.Tensor], instances: List[Instances]):
"""
Forward logic of the keypoint prediction branch.
Args:
features (dict[str, Tensor]): mapping from feature map names to tensor.
Same as in :meth:`ROIHeads.forward`.
instances (list[Instances]): the per-image instances to train/predict keypoints.
In training, they can be the proposals.
In inference, they can be the boxes predicted by R-CNN box head.
Returns:
In training, a dict of losses.
In inference, update `instances` with new fields "pred_keypoints" and return it.
"""
if not self.keypoint_on:
return {} if self.training else instances
if self.training:
# head is only trained on positive proposals with >=1 visible keypoints.
instances, _ = select_foreground_proposals(instances, self.num_classes)
instances = select_proposals_with_visible_keypoints(instances)
if self.keypoint_pooler is not None:
features = [features[f] for f in self.keypoint_in_features]
boxes = [x.proposal_boxes if self.training else x.pred_boxes for x in instances]
features = self.keypoint_pooler(features, boxes)
else:
features = {f: features[f] for f in self.keypoint_in_features}
return self.keypoint_head(features, instances)
|