Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,973 Bytes
689a1f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
import datetime
import io
import json
import logging
import os
import shutil
import numpy as np
import pycocotools.mask as mask_util
from detectron2.structures import Boxes, BoxMode, PolygonMasks, RotatedBoxes
from detectron2.utils.file_io import PathManager
from fvcore.common.timer import Timer
from iopath.common.file_io import file_lock
from PIL import Image
from .. import DatasetCatalog, MetadataCatalog
"""
This file contains functions to parse COCO-format annotations into dicts in "Detectron2 format".
"""
logger = logging.getLogger(__name__)
__all__ = [
"load_coco_json",
"load_sem_seg",
"convert_to_coco_json",
"register_coco_instances",
]
def load_coco_json(
json_file, image_root, dataset_name=None, extra_annotation_keys=None
):
"""
Load a json file with COCO's instances annotation format.
Currently supports instance detection, instance segmentation,
and person keypoints annotations.
Args:
json_file (str): full path to the json file in COCO instances annotation format.
image_root (str or path-like): the directory where the images in this json file exists.
dataset_name (str or None): the name of the dataset (e.g., coco_2017_train).
When provided, this function will also do the following:
* Put "thing_classes" into the metadata associated with this dataset.
* Map the category ids into a contiguous range (needed by standard dataset format),
and add "thing_dataset_id_to_contiguous_id" to the metadata associated
with this dataset.
This option should usually be provided, unless users need to load
the original json content and apply more processing manually.
extra_annotation_keys (list[str]): list of per-annotation keys that should also be
loaded into the dataset dict (besides "iscrowd", "bbox", "keypoints",
"category_id", "segmentation"). The values for these keys will be returned as-is.
For example, the densepose annotations are loaded in this way.
Returns:
list[dict]: a list of dicts in Detectron2 standard dataset dicts format (See
`Using Custom Datasets </tutorials/datasets.html>`_ ) when `dataset_name` is not None.
If `dataset_name` is None, the returned `category_ids` may be
incontiguous and may not conform to the Detectron2 standard format.
Notes:
1. This function does not read the image files.
The results do not have the "image" field.
"""
from pycocotools.coco import COCO
timer = Timer()
json_file = PathManager.get_local_path(json_file)
with contextlib.redirect_stdout(io.StringIO()):
coco_api = COCO(json_file)
if timer.seconds() > 1:
logger.info(
"Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds())
)
id_map = None
if dataset_name is not None:
meta = MetadataCatalog.get(dataset_name)
cat_ids = sorted(coco_api.getCatIds())
cats = coco_api.loadCats(cat_ids)
# The categories in a custom json file may not be sorted.
thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])]
meta.thing_classes = thing_classes
# In COCO, certain category ids are artificially removed,
# and by convention they are always ignored.
# We deal with COCO's id issue and translate
# the category ids to contiguous ids in [0, 80).
# It works by looking at the "categories" field in the json, therefore
# if users' own json also have incontiguous ids, we'll
# apply this mapping as well but print a warning.
if not (min(cat_ids) == 1 and max(cat_ids) == len(cat_ids)):
if "coco" not in dataset_name:
logger.warning(
"""
Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.
"""
)
id_map = {v: i for i, v in enumerate(cat_ids)}
meta.thing_dataset_id_to_contiguous_id = id_map
# sort indices for reproducible results
img_ids = sorted(coco_api.imgs.keys())
# imgs is a list of dicts, each looks something like:
# {'license': 4,
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
# 'file_name': 'COCO_val2014_000000001268.jpg',
# 'height': 427,
# 'width': 640,
# 'date_captured': '2013-11-17 05:57:24',
# 'id': 1268}
imgs = coco_api.loadImgs(img_ids)
# anns is a list[list[dict]], where each dict is an annotation
# record for an object. The inner list enumerates the objects in an image
# and the outer list enumerates over images. Example of anns[0]:
# [{'segmentation': [[192.81,
# 247.09,
# ...
# 219.03,
# 249.06]],
# 'area': 1035.749,
# 'iscrowd': 0,
# 'image_id': 1268,
# 'bbox': [192.81, 224.8, 74.73, 33.43],
# 'category_id': 16,
# 'id': 42986},
# ...]
anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
total_num_valid_anns = sum([len(x) for x in anns])
total_num_anns = len(coco_api.anns)
if total_num_valid_anns < total_num_anns:
logger.warning(
f"{json_file} contains {total_num_anns} annotations, but only "
f"{total_num_valid_anns} of them match to images in the file."
)
if "minival" not in json_file:
# The popular valminusminival & minival annotations for COCO2014 contain this bug.
# However the ratio of buggy annotations there is tiny and does not affect accuracy.
# Therefore we explicitly white-list them.
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
assert len(set(ann_ids)) == len(
ann_ids
), "Annotation ids in '{}' are not unique!".format(json_file)
imgs_anns = list(zip(imgs, anns))
logger.info(
"Loaded {} images in COCO format from {}".format(len(imgs_anns), json_file)
)
dataset_dicts = []
ann_keys = ["iscrowd", "bbox", "keypoints", "category_id"] + (
extra_annotation_keys or []
)
num_instances_without_valid_segmentation = 0
for (img_dict, anno_dict_list) in imgs_anns:
record = {}
record["file_name"] = os.path.join(image_root, img_dict["file_name"])
record["height"] = img_dict["height"]
record["width"] = img_dict["width"]
image_id = record["image_id"] = img_dict["id"]
objs = []
for anno in anno_dict_list:
# Check that the image_id in this annotation is the same as
# the image_id we're looking at.
# This fails only when the data parsing logic or the annotation file is buggy.
# The original COCO valminusminival2014 & minival2014 annotation files
# actually contains bugs that, together with certain ways of using COCO API,
# can trigger this assertion.
assert anno["image_id"] == image_id
assert (
anno.get("ignore", 0) == 0
), '"ignore" in COCO json file is not supported.'
obj = {key: anno[key] for key in ann_keys if key in anno}
if "bbox" in obj and len(obj["bbox"]) == 0:
raise ValueError(
f"One annotation of image {image_id} contains empty 'bbox' value! "
"This json does not have valid COCO format."
)
segm = anno.get("segmentation", None)
if segm: # either list[list[float]] or dict(RLE)
if isinstance(segm, dict):
if isinstance(segm["counts"], list):
# convert to compressed RLE
segm = mask_util.frPyObjects(segm, *segm["size"])
else:
# filter out invalid polygons (< 3 points)
segm = [
poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6
]
if len(segm) == 0:
num_instances_without_valid_segmentation += 1
continue # ignore this instance
obj["segmentation"] = segm
keypts = anno.get("keypoints", None)
if keypts: # list[int]
for idx, v in enumerate(keypts):
if idx % 3 != 2:
# COCO's segmentation coordinates are floating points in [0, H or W],
# but keypoint coordinates are integers in [0, H-1 or W-1]
# Therefore we assume the coordinates are "pixel indices" and
# add 0.5 to convert to floating point coordinates.
keypts[idx] = v + 0.5
obj["keypoints"] = keypts
obj["bbox_mode"] = BoxMode.XYWH_ABS
if id_map:
annotation_category_id = obj["category_id"]
try:
obj["category_id"] = id_map[annotation_category_id]
except KeyError as e:
raise KeyError(
f"Encountered category_id={annotation_category_id} "
"but this id does not exist in 'categories' of the json file."
) from e
objs.append(obj)
record["annotations"] = objs
dataset_dicts.append(record)
if num_instances_without_valid_segmentation > 0:
logger.warning(
"Filtered out {} instances without valid segmentation. ".format(
num_instances_without_valid_segmentation
)
+ "There might be issues in your dataset generation process. Please "
"check https://detectron2.readthedocs.io/en/latest/tutorials/datasets.html carefully"
)
return dataset_dicts
def load_sem_seg(gt_root, image_root, gt_ext="png", image_ext="jpg"):
"""
Load semantic segmentation datasets. All files under "gt_root" with "gt_ext" extension are
treated as ground truth annotations and all files under "image_root" with "image_ext" extension
as input images. Ground truth and input images are matched using file paths relative to
"gt_root" and "image_root" respectively without taking into account file extensions.
This works for COCO as well as some other datasets.
Args:
gt_root (str): full path to ground truth semantic segmentation files. Semantic segmentation
annotations are stored as images with integer values in pixels that represent
corresponding semantic labels.
image_root (str): the directory where the input images are.
gt_ext (str): file extension for ground truth annotations.
image_ext (str): file extension for input images.
Returns:
list[dict]:
a list of dicts in detectron2 standard format without instance-level
annotation.
Notes:
1. This function does not read the image and ground truth files.
The results do not have the "image" and "sem_seg" fields.
"""
# We match input images with ground truth based on their relative filepaths (without file
# extensions) starting from 'image_root' and 'gt_root' respectively.
def file2id(folder_path, file_path):
# extract relative path starting from `folder_path`
image_id = os.path.normpath(os.path.relpath(file_path, start=folder_path))
# remove file extension
image_id = os.path.splitext(image_id)[0]
return image_id
input_files = sorted(
(
os.path.join(image_root, f)
for f in PathManager.ls(image_root)
if f.endswith(image_ext)
),
key=lambda file_path: file2id(image_root, file_path),
)
gt_files = sorted(
(
os.path.join(gt_root, f)
for f in PathManager.ls(gt_root)
if f.endswith(gt_ext)
),
key=lambda file_path: file2id(gt_root, file_path),
)
assert len(gt_files) > 0, "No annotations found in {}.".format(gt_root)
# Use the intersection, so that val2017_100 annotations can run smoothly with val2017 images
if len(input_files) != len(gt_files):
logger.warn(
"Directory {} and {} has {} and {} files, respectively.".format(
image_root, gt_root, len(input_files), len(gt_files)
)
)
input_basenames = [os.path.basename(f)[: -len(image_ext)] for f in input_files]
gt_basenames = [os.path.basename(f)[: -len(gt_ext)] for f in gt_files]
intersect = list(set(input_basenames) & set(gt_basenames))
# sort, otherwise each worker may obtain a list[dict] in different order
intersect = sorted(intersect)
logger.warn("Will use their intersection of {} files.".format(len(intersect)))
input_files = [os.path.join(image_root, f + image_ext) for f in intersect]
gt_files = [os.path.join(gt_root, f + gt_ext) for f in intersect]
logger.info(
"Loaded {} images with semantic segmentation from {}".format(
len(input_files), image_root
)
)
dataset_dicts = []
for (img_path, gt_path) in zip(input_files, gt_files):
record = {}
record["file_name"] = img_path
record["sem_seg_file_name"] = gt_path
dataset_dicts.append(record)
return dataset_dicts
def convert_to_coco_dict(dataset_name):
"""
Convert an instance detection/segmentation or keypoint detection dataset
in detectron2's standard format into COCO json format.
Generic dataset description can be found here:
https://detectron2.readthedocs.io/tutorials/datasets.html#register-a-dataset
COCO data format description can be found here:
http://cocodataset.org/#format-data
Args:
dataset_name (str):
name of the source dataset
Must be registered in DatastCatalog and in detectron2's standard format.
Must have corresponding metadata "thing_classes"
Returns:
coco_dict: serializable dict in COCO json format
"""
dataset_dicts = DatasetCatalog.get(dataset_name)
metadata = MetadataCatalog.get(dataset_name)
# unmap the category mapping ids for COCO
if hasattr(metadata, "thing_dataset_id_to_contiguous_id"):
reverse_id_mapping = {
v: k for k, v in metadata.thing_dataset_id_to_contiguous_id.items()
}
reverse_id_mapper = lambda contiguous_id: reverse_id_mapping[contiguous_id] # noqa
else:
reverse_id_mapper = lambda contiguous_id: contiguous_id # noqa
categories = [
{"id": reverse_id_mapper(id), "name": name}
for id, name in enumerate(metadata.thing_classes)
]
logger.info("Converting dataset dicts into COCO format")
coco_images = []
coco_annotations = []
for image_id, image_dict in enumerate(dataset_dicts):
coco_image = {
"id": image_dict.get("image_id", image_id),
"width": int(image_dict["width"]),
"height": int(image_dict["height"]),
"file_name": str(image_dict["file_name"]),
}
coco_images.append(coco_image)
anns_per_image = image_dict.get("annotations", [])
for annotation in anns_per_image:
# create a new dict with only COCO fields
coco_annotation = {}
# COCO requirement: XYWH box format for axis-align and XYWHA for rotated
bbox = annotation["bbox"]
if isinstance(bbox, np.ndarray):
if bbox.ndim != 1:
raise ValueError(
f"bbox has to be 1-dimensional. Got shape={bbox.shape}."
)
bbox = bbox.tolist()
if len(bbox) not in [4, 5]:
raise ValueError(f"bbox has to has length 4 or 5. Got {bbox}.")
from_bbox_mode = annotation["bbox_mode"]
to_bbox_mode = BoxMode.XYWH_ABS if len(bbox) == 4 else BoxMode.XYWHA_ABS
bbox = BoxMode.convert(bbox, from_bbox_mode, to_bbox_mode)
# COCO requirement: instance area
if "segmentation" in annotation:
# Computing areas for instances by counting the pixels
segmentation = annotation["segmentation"]
# TODO: check segmentation type: RLE, BinaryMask or Polygon
if isinstance(segmentation, list):
polygons = PolygonMasks([segmentation])
area = polygons.area()[0].item()
elif isinstance(segmentation, dict): # RLE
area = mask_util.area(segmentation).item()
else:
raise TypeError(f"Unknown segmentation type {type(segmentation)}!")
else:
# Computing areas using bounding boxes
if to_bbox_mode == BoxMode.XYWH_ABS:
bbox_xy = BoxMode.convert(bbox, to_bbox_mode, BoxMode.XYXY_ABS)
area = Boxes([bbox_xy]).area()[0].item()
else:
area = RotatedBoxes([bbox]).area()[0].item()
if "keypoints" in annotation:
keypoints = annotation["keypoints"] # list[int]
for idx, v in enumerate(keypoints):
if idx % 3 != 2:
# COCO's segmentation coordinates are floating points in [0, H or W],
# but keypoint coordinates are integers in [0, H-1 or W-1]
# For COCO format consistency we substract 0.5
# https://github.com/facebookresearch/detectron2/pull/175#issuecomment-551202163
keypoints[idx] = v - 0.5
if "num_keypoints" in annotation:
num_keypoints = annotation["num_keypoints"]
else:
num_keypoints = sum(kp > 0 for kp in keypoints[2::3])
# COCO requirement:
# linking annotations to images
# "id" field must start with 1
coco_annotation["id"] = len(coco_annotations) + 1
coco_annotation["image_id"] = coco_image["id"]
coco_annotation["bbox"] = [round(float(x), 3) for x in bbox]
coco_annotation["area"] = float(area)
coco_annotation["iscrowd"] = int(annotation.get("iscrowd", 0))
coco_annotation["category_id"] = int(
reverse_id_mapper(annotation["category_id"])
)
# Add optional fields
if "keypoints" in annotation:
coco_annotation["keypoints"] = keypoints
coco_annotation["num_keypoints"] = num_keypoints
if "segmentation" in annotation:
seg = coco_annotation["segmentation"] = annotation["segmentation"]
if isinstance(seg, dict): # RLE
counts = seg["counts"]
if not isinstance(counts, str):
# make it json-serializable
seg["counts"] = counts.decode("ascii")
coco_annotations.append(coco_annotation)
logger.info(
"Conversion finished, "
f"#images: {len(coco_images)}, #annotations: {len(coco_annotations)}"
)
info = {
"date_created": str(datetime.datetime.now()),
"description": "Automatically generated COCO json file for Detectron2.",
}
coco_dict = {
"info": info,
"images": coco_images,
"categories": categories,
"licenses": None,
}
if len(coco_annotations) > 0:
coco_dict["annotations"] = coco_annotations
return coco_dict
def convert_to_coco_json(dataset_name, output_file, allow_cached=True):
"""
Converts dataset into COCO format and saves it to a json file.
dataset_name must be registered in DatasetCatalog and in detectron2's standard format.
Args:
dataset_name:
reference from the config file to the catalogs
must be registered in DatasetCatalog and in detectron2's standard format
output_file: path of json file that will be saved to
allow_cached: if json file is already present then skip conversion
"""
# TODO: The dataset or the conversion script *may* change,
# a checksum would be useful for validating the cached data
PathManager.mkdirs(os.path.dirname(output_file))
with file_lock(output_file):
if PathManager.exists(output_file) and allow_cached:
logger.warning(
f"Using previously cached COCO format annotations at '{output_file}'. "
"You need to clear the cache file if your dataset has been modified."
)
else:
logger.info(
f"Converting annotations of dataset '{dataset_name}' to COCO format ...)"
)
coco_dict = convert_to_coco_dict(dataset_name)
logger.info(f"Caching COCO format annotations at '{output_file}' ...")
tmp_file = output_file + ".tmp"
with PathManager.open(tmp_file, "w") as f:
json.dump(coco_dict, f)
shutil.move(tmp_file, output_file)
def register_coco_instances(name, metadata, json_file, image_root):
"""
Register a dataset in COCO's json annotation format for
instance detection, instance segmentation and keypoint detection.
(i.e., Type 1 and 2 in http://cocodataset.org/#format-data.
`instances*.json` and `person_keypoints*.json` in the dataset).
This is an example of how to register a new dataset.
You can do something similar to this function, to register new datasets.
Args:
name (str): the name that identifies a dataset, e.g. "coco_2014_train".
metadata (dict): extra metadata associated with this dataset. You can
leave it as an empty dict.
json_file (str): path to the json instance annotation file.
image_root (str or path-like): directory which contains all the images.
"""
assert isinstance(name, str), name
assert isinstance(json_file, (str, os.PathLike)), json_file
assert isinstance(image_root, (str, os.PathLike)), image_root
# 1. register a function which returns dicts
DatasetCatalog.register(name, lambda: load_coco_json(json_file, image_root, name))
# 2. Optionally, add metadata about this dataset,
# since they might be useful in evaluation, visualization or logging
MetadataCatalog.get(name).set(
json_file=json_file, image_root=image_root, evaluator_type="coco", **metadata
)
def main() -> None:
global logger
"""
Test the COCO json dataset loader.
Usage:
python -m detectron2.data.datasets.coco \
path/to/json path/to/image_root dataset_name
"dataset_name" can be "coco_2014_minival_100", or other
pre-registered ones
"""
import sys
import detectron2.data.datasets # noqa # add pre-defined metadata
from detectron2.utils.logger import setup_logger
from detectron2.utils.visualizer import Visualizer
logger = setup_logger(name=__name__)
assert sys.argv[3] in DatasetCatalog.list()
meta = MetadataCatalog.get(sys.argv[3])
dicts = load_coco_json(sys.argv[1], sys.argv[2], sys.argv[3])
logger.info("Done loading {} samples.".format(len(dicts)))
dirname = "coco-data-vis"
os.makedirs(dirname, exist_ok=True)
for d in dicts:
img = np.array(Image.open(d["file_name"]))
visualizer = Visualizer(img, metadata=meta)
vis = visualizer.draw_dataset_dict(d)
fpath = os.path.join(dirname, os.path.basename(d["file_name"]))
vis.save(fpath)
if __name__ == "__main__":
main() # pragma: no cover
|