Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,907 Bytes
689a1f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
"""
This file contains components with some default boilerplate logic user may need
in training / testing. They will not work for everyone, but many users may find them useful.
The behavior of functions/classes in this file is subject to change,
since they are meant to represent the "common default behavior" people need in their projects.
"""
import argparse
import logging
import os
import sys
import weakref
from collections import OrderedDict
from typing import Optional
import torch
from fvcore.nn.precise_bn import get_bn_modules
from omegaconf import OmegaConf
from torch.nn.parallel import DistributedDataParallel
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import CfgNode, LazyConfig
from detectron2.data import (
MetadataCatalog,
build_detection_test_loader,
build_detection_train_loader,
)
from detectron2.evaluation import (
DatasetEvaluator,
inference_on_dataset,
print_csv_format,
verify_results,
)
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler, build_optimizer
from detectron2.utils import comm
from detectron2.utils.collect_env import collect_env_info
from detectron2.utils.env import seed_all_rng
from detectron2.utils.events import CommonMetricPrinter, JSONWriter, TensorboardXWriter
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import setup_logger
from . import hooks
from .train_loop import AMPTrainer, SimpleTrainer, TrainerBase
__all__ = [
"create_ddp_model",
"default_argument_parser",
"default_setup",
"default_writers",
"DefaultPredictor",
"DefaultTrainer",
]
def create_ddp_model(model, *, fp16_compression=False, **kwargs):
"""
Create a DistributedDataParallel model if there are >1 processes.
Args:
model: a torch.nn.Module
fp16_compression: add fp16 compression hooks to the ddp object.
See more at https://pytorch.org/docs/stable/ddp_comm_hooks.html#torch.distributed.algorithms.ddp_comm_hooks.default_hooks.fp16_compress_hook
kwargs: other arguments of :module:`torch.nn.parallel.DistributedDataParallel`.
""" # noqa
if comm.get_world_size() == 1:
return model
if "device_ids" not in kwargs:
kwargs["device_ids"] = [comm.get_local_rank()]
ddp = DistributedDataParallel(model, **kwargs)
if fp16_compression:
from torch.distributed.algorithms.ddp_comm_hooks import default as comm_hooks
ddp.register_comm_hook(state=None, hook=comm_hooks.fp16_compress_hook)
return ddp
def default_argument_parser(epilog=None):
"""
Create a parser with some common arguments used by detectron2 users.
Args:
epilog (str): epilog passed to ArgumentParser describing the usage.
Returns:
argparse.ArgumentParser:
"""
parser = argparse.ArgumentParser(
epilog=epilog
or f"""
Examples:
Run on single machine:
$ {sys.argv[0]} --num-gpus 8 --config-file cfg.yaml
Change some config options:
$ {sys.argv[0]} --config-file cfg.yaml MODEL.WEIGHTS /path/to/weight.pth SOLVER.BASE_LR 0.001
Run on multiple machines:
(machine0)$ {sys.argv[0]} --machine-rank 0 --num-machines 2 --dist-url <URL> [--other-flags]
(machine1)$ {sys.argv[0]} --machine-rank 1 --num-machines 2 --dist-url <URL> [--other-flags]
""",
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
parser.add_argument(
"--resume",
action="store_true",
help="Whether to attempt to resume from the checkpoint directory. "
"See documentation of `DefaultTrainer.resume_or_load()` for what it means.",
)
parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
parser.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*")
parser.add_argument("--num-machines", type=int, default=1, help="total number of machines")
parser.add_argument(
"--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)"
)
# PyTorch still may leave orphan processes in multi-gpu training.
# Therefore we use a deterministic way to obtain port,
# so that users are aware of orphan processes by seeing the port occupied.
port = 2**15 + 2**14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2**14
parser.add_argument(
"--dist-url",
default="tcp://127.0.0.1:{}".format(port),
help="initialization URL for pytorch distributed backend. See "
"https://pytorch.org/docs/stable/distributed.html for details.",
)
parser.add_argument(
"opts",
help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
""".strip(),
default=None,
nargs=argparse.REMAINDER,
)
return parser
def _try_get_key(cfg, *keys, default=None):
"""
Try select keys from cfg until the first key that exists. Otherwise return default.
"""
if isinstance(cfg, CfgNode):
cfg = OmegaConf.create(cfg.dump())
for k in keys:
none = object()
p = OmegaConf.select(cfg, k, default=none)
if p is not none:
return p
return default
def _highlight(code, filename):
try:
import pygments
except ImportError:
return code
from pygments.lexers import Python3Lexer, YamlLexer
from pygments.formatters import Terminal256Formatter
lexer = Python3Lexer() if filename.endswith(".py") else YamlLexer()
code = pygments.highlight(code, lexer, Terminal256Formatter(style="monokai"))
return code
def default_setup(cfg, args):
"""
Perform some basic common setups at the beginning of a job, including:
1. Set up the detectron2 logger
2. Log basic information about environment, cmdline arguments, and config
3. Backup the config to the output directory
Args:
cfg (CfgNode or omegaconf.DictConfig): the full config to be used
args (argparse.NameSpace): the command line arguments to be logged
"""
output_dir = _try_get_key(cfg, "OUTPUT_DIR", "output_dir", "train.output_dir")
if comm.is_main_process() and output_dir:
PathManager.mkdirs(output_dir)
rank = comm.get_rank()
setup_logger(output_dir, distributed_rank=rank, name="fvcore")
logger = setup_logger(output_dir, distributed_rank=rank)
logger.info("Rank of current process: {}. World size: {}".format(rank, comm.get_world_size()))
logger.info("Environment info:\n" + collect_env_info())
logger.info("Command line arguments: " + str(args))
if hasattr(args, "config_file") and args.config_file != "":
logger.info(
"Contents of args.config_file={}:\n{}".format(
args.config_file,
_highlight(PathManager.open(args.config_file, "r").read(), args.config_file),
)
)
if comm.is_main_process() and output_dir:
# Note: some of our scripts may expect the existence of
# config.yaml in output directory
path = os.path.join(output_dir, "config.yaml")
if isinstance(cfg, CfgNode):
logger.info("Running with full config:\n{}".format(_highlight(cfg.dump(), ".yaml")))
with PathManager.open(path, "w") as f:
f.write(cfg.dump())
else:
LazyConfig.save(cfg, path)
logger.info("Full config saved to {}".format(path))
# make sure each worker has a different, yet deterministic seed if specified
seed = _try_get_key(cfg, "SEED", "train.seed", default=-1)
seed_all_rng(None if seed < 0 else seed + rank)
# cudnn benchmark has large overhead. It shouldn't be used considering the small size of
# typical validation set.
if not (hasattr(args, "eval_only") and args.eval_only):
torch.backends.cudnn.benchmark = _try_get_key(
cfg, "CUDNN_BENCHMARK", "train.cudnn_benchmark", default=False
)
def default_writers(output_dir: str, max_iter: Optional[int] = None):
"""
Build a list of :class:`EventWriter` to be used.
It now consists of a :class:`CommonMetricPrinter`,
:class:`TensorboardXWriter` and :class:`JSONWriter`.
Args:
output_dir: directory to store JSON metrics and tensorboard events
max_iter: the total number of iterations
Returns:
list[EventWriter]: a list of :class:`EventWriter` objects.
"""
PathManager.mkdirs(output_dir)
return [
# It may not always print what you want to see, since it prints "common" metrics only.
CommonMetricPrinter(max_iter),
JSONWriter(os.path.join(output_dir, "metrics.json")),
TensorboardXWriter(output_dir),
]
class DefaultPredictor:
"""
Create a simple end-to-end predictor with the given config that runs on
single device for a single input image.
Compared to using the model directly, this class does the following additions:
1. Load checkpoint from `cfg.MODEL.WEIGHTS`.
2. Always take BGR image as the input and apply conversion defined by `cfg.INPUT.FORMAT`.
3. Apply resizing defined by `cfg.INPUT.{MIN,MAX}_SIZE_TEST`.
4. Take one input image and produce a single output, instead of a batch.
This is meant for simple demo purposes, so it does the above steps automatically.
This is not meant for benchmarks or running complicated inference logic.
If you'd like to do anything more complicated, please refer to its source code as
examples to build and use the model manually.
Attributes:
metadata (Metadata): the metadata of the underlying dataset, obtained from
cfg.DATASETS.TEST.
Examples:
::
pred = DefaultPredictor(cfg)
inputs = cv2.imread("input.jpg")
outputs = pred(inputs)
"""
def __init__(self, cfg):
self.cfg = cfg.clone() # cfg can be modified by model
self.model = build_model(self.cfg)
self.model.eval()
if len(cfg.DATASETS.TEST):
self.metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0])
checkpointer = DetectionCheckpointer(self.model)
checkpointer.load(cfg.MODEL.WEIGHTS)
self.aug = T.ResizeShortestEdge(
[cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
)
self.input_format = cfg.INPUT.FORMAT
assert self.input_format in ["RGB", "BGR"], self.input_format
def __call__(self, original_image):
"""
Args:
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
Returns:
predictions (dict):
the output of the model for one image only.
See :doc:`/tutorials/models` for details about the format.
"""
with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258
# Apply pre-processing to image.
if self.input_format == "RGB":
# whether the model expects BGR inputs or RGB
original_image = original_image[:, :, ::-1]
height, width = original_image.shape[:2]
image = self.aug.get_transform(original_image).apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
image.to(self.cfg.MODEL.DEVICE)
inputs = {"image": image, "height": height, "width": width}
predictions = self.model([inputs])[0]
return predictions
class DefaultTrainer(TrainerBase):
"""
A trainer with default training logic. It does the following:
1. Create a :class:`SimpleTrainer` using model, optimizer, dataloader
defined by the given config. Create a LR scheduler defined by the config.
2. Load the last checkpoint or `cfg.MODEL.WEIGHTS`, if exists, when
`resume_or_load` is called.
3. Register a few common hooks defined by the config.
It is created to simplify the **standard model training workflow** and reduce code boilerplate
for users who only need the standard training workflow, with standard features.
It means this class makes *many assumptions* about your training logic that
may easily become invalid in a new research. In fact, any assumptions beyond those made in the
:class:`SimpleTrainer` are too much for research.
The code of this class has been annotated about restrictive assumptions it makes.
When they do not work for you, you're encouraged to:
1. Overwrite methods of this class, OR:
2. Use :class:`SimpleTrainer`, which only does minimal SGD training and
nothing else. You can then add your own hooks if needed. OR:
3. Write your own training loop similar to `tools/plain_train_net.py`.
See the :doc:`/tutorials/training` tutorials for more details.
Note that the behavior of this class, like other functions/classes in
this file, is not stable, since it is meant to represent the "common default behavior".
It is only guaranteed to work well with the standard models and training workflow in detectron2.
To obtain more stable behavior, write your own training logic with other public APIs.
Examples:
::
trainer = DefaultTrainer(cfg)
trainer.resume_or_load() # load last checkpoint or MODEL.WEIGHTS
trainer.train()
Attributes:
scheduler:
checkpointer (DetectionCheckpointer):
cfg (CfgNode):
"""
def __init__(self, cfg):
"""
Args:
cfg (CfgNode):
"""
super().__init__()
logger = logging.getLogger("detectron2")
if not logger.isEnabledFor(logging.INFO): # setup_logger is not called for d2
setup_logger()
cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size())
# Assume these objects must be constructed in this order.
model = self.build_model(cfg)
optimizer = self.build_optimizer(cfg, model)
data_loader = self.build_train_loader(cfg)
model = create_ddp_model(model, broadcast_buffers=False)
self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(
model, data_loader, optimizer
)
self.scheduler = self.build_lr_scheduler(cfg, optimizer)
self.checkpointer = DetectionCheckpointer(
# Assume you want to save checkpoints together with logs/statistics
model,
cfg.OUTPUT_DIR,
trainer=weakref.proxy(self),
)
self.start_iter = 0
self.max_iter = cfg.SOLVER.MAX_ITER
self.cfg = cfg
self.register_hooks(self.build_hooks())
def resume_or_load(self, resume=True):
"""
If `resume==True` and `cfg.OUTPUT_DIR` contains the last checkpoint (defined by
a `last_checkpoint` file), resume from the file. Resuming means loading all
available states (eg. optimizer and scheduler) and update iteration counter
from the checkpoint. ``cfg.MODEL.WEIGHTS`` will not be used.
Otherwise, this is considered as an independent training. The method will load model
weights from the file `cfg.MODEL.WEIGHTS` (but will not load other states) and start
from iteration 0.
Args:
resume (bool): whether to do resume or not
"""
self.checkpointer.resume_or_load(self.cfg.MODEL.WEIGHTS, resume=resume)
if resume and self.checkpointer.has_checkpoint():
# The checkpoint stores the training iteration that just finished, thus we start
# at the next iteration
self.start_iter = self.iter + 1
def build_hooks(self):
"""
Build a list of default hooks, including timing, evaluation,
checkpointing, lr scheduling, precise BN, writing events.
Returns:
list[HookBase]:
"""
cfg = self.cfg.clone()
cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
ret = [
hooks.IterationTimer(),
hooks.LRScheduler(),
hooks.PreciseBN(
# Run at the same freq as (but before) evaluation.
cfg.TEST.EVAL_PERIOD,
self.model,
# Build a new data loader to not affect training
self.build_train_loader(cfg),
cfg.TEST.PRECISE_BN.NUM_ITER,
)
if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model)
else None,
]
# Do PreciseBN before checkpointer, because it updates the model and need to
# be saved by checkpointer.
# This is not always the best: if checkpointing has a different frequency,
# some checkpoints may have more precise statistics than others.
if comm.is_main_process():
ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD))
def test_and_save_results():
self._last_eval_results = self.test(self.cfg, self.model)
return self._last_eval_results
# Do evaluation after checkpointer, because then if it fails,
# we can use the saved checkpoint to debug.
ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))
if comm.is_main_process():
# Here the default print/log frequency of each writer is used.
# run writers in the end, so that evaluation metrics are written
ret.append(hooks.PeriodicWriter(self.build_writers(), period=20))
return ret
def build_writers(self):
"""
Build a list of writers to be used using :func:`default_writers()`.
If you'd like a different list of writers, you can overwrite it in
your trainer.
Returns:
list[EventWriter]: a list of :class:`EventWriter` objects.
"""
return default_writers(self.cfg.OUTPUT_DIR, self.max_iter)
def train(self):
"""
Run training.
Returns:
OrderedDict of results, if evaluation is enabled. Otherwise None.
"""
super().train(self.start_iter, self.max_iter)
if len(self.cfg.TEST.EXPECTED_RESULTS) and comm.is_main_process():
assert hasattr(
self, "_last_eval_results"
), "No evaluation results obtained during training!"
verify_results(self.cfg, self._last_eval_results)
return self._last_eval_results
def run_step(self):
self._trainer.iter = self.iter
self._trainer.run_step()
def state_dict(self):
ret = super().state_dict()
ret["_trainer"] = self._trainer.state_dict()
return ret
def load_state_dict(self, state_dict):
super().load_state_dict(state_dict)
self._trainer.load_state_dict(state_dict["_trainer"])
@classmethod
def build_model(cls, cfg):
"""
Returns:
torch.nn.Module:
It now calls :func:`detectron2.modeling.build_model`.
Overwrite it if you'd like a different model.
"""
model = build_model(cfg)
logger = logging.getLogger(__name__)
logger.info("Model:\n{}".format(model))
return model
@classmethod
def build_optimizer(cls, cfg, model):
"""
Returns:
torch.optim.Optimizer:
It now calls :func:`detectron2.solver.build_optimizer`.
Overwrite it if you'd like a different optimizer.
"""
return build_optimizer(cfg, model)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_train_loader(cls, cfg):
"""
Returns:
iterable
It now calls :func:`detectron2.data.build_detection_train_loader`.
Overwrite it if you'd like a different data loader.
"""
return build_detection_train_loader(cfg)
@classmethod
def build_test_loader(cls, cfg, dataset_name):
"""
Returns:
iterable
It now calls :func:`detectron2.data.build_detection_test_loader`.
Overwrite it if you'd like a different data loader.
"""
return build_detection_test_loader(cfg, dataset_name)
@classmethod
def build_evaluator(cls, cfg, dataset_name):
"""
Returns:
DatasetEvaluator or None
It is not implemented by default.
"""
raise NotImplementedError(
"""
If you want DefaultTrainer to automatically run evaluation,
please implement `build_evaluator()` in subclasses (see train_net.py for example).
Alternatively, you can call evaluation functions yourself (see Colab balloon tutorial for example).
"""
)
@classmethod
def test(cls, cfg, model, evaluators=None):
"""
Evaluate the given model. The given model is expected to already contain
weights to evaluate.
Args:
cfg (CfgNode):
model (nn.Module):
evaluators (list[DatasetEvaluator] or None): if None, will call
:meth:`build_evaluator`. Otherwise, must have the same length as
``cfg.DATASETS.TEST``.
Returns:
dict: a dict of result metrics
"""
logger = logging.getLogger(__name__)
if isinstance(evaluators, DatasetEvaluator):
evaluators = [evaluators]
if evaluators is not None:
assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format(
len(cfg.DATASETS.TEST), len(evaluators)
)
results = OrderedDict()
for idx, dataset_name in enumerate(cfg.DATASETS.TEST):
data_loader = cls.build_test_loader(cfg, dataset_name)
# When evaluators are passed in as arguments,
# implicitly assume that evaluators can be created before data_loader.
if evaluators is not None:
evaluator = evaluators[idx]
else:
try:
evaluator = cls.build_evaluator(cfg, dataset_name)
except NotImplementedError:
logger.warn(
"No evaluator found. Use `DefaultTrainer.test(evaluators=)`, "
"or implement its `build_evaluator` method."
)
results[dataset_name] = {}
continue
results_i = inference_on_dataset(model, data_loader, evaluator)
results[dataset_name] = results_i
if comm.is_main_process():
assert isinstance(
results_i, dict
), "Evaluator must return a dict on the main process. Got {} instead.".format(
results_i
)
logger.info("Evaluation results for {} in csv format:".format(dataset_name))
print_csv_format(results_i)
if len(results) == 1:
results = list(results.values())[0]
return results
@staticmethod
def auto_scale_workers(cfg, num_workers: int):
"""
When the config is defined for certain number of workers (according to
``cfg.SOLVER.REFERENCE_WORLD_SIZE``) that's different from the number of
workers currently in use, returns a new cfg where the total batch size
is scaled so that the per-GPU batch size stays the same as the
original ``IMS_PER_BATCH // REFERENCE_WORLD_SIZE``.
Other config options are also scaled accordingly:
* training steps and warmup steps are scaled inverse proportionally.
* learning rate are scaled proportionally, following :paper:`ImageNet in 1h`.
For example, with the original config like the following:
.. code-block:: yaml
IMS_PER_BATCH: 16
BASE_LR: 0.1
REFERENCE_WORLD_SIZE: 8
MAX_ITER: 5000
STEPS: (4000,)
CHECKPOINT_PERIOD: 1000
When this config is used on 16 GPUs instead of the reference number 8,
calling this method will return a new config with:
.. code-block:: yaml
IMS_PER_BATCH: 32
BASE_LR: 0.2
REFERENCE_WORLD_SIZE: 16
MAX_ITER: 2500
STEPS: (2000,)
CHECKPOINT_PERIOD: 500
Note that both the original config and this new config can be trained on 16 GPUs.
It's up to user whether to enable this feature (by setting ``REFERENCE_WORLD_SIZE``).
Returns:
CfgNode: a new config. Same as original if ``cfg.SOLVER.REFERENCE_WORLD_SIZE==0``.
"""
old_world_size = cfg.SOLVER.REFERENCE_WORLD_SIZE
if old_world_size == 0 or old_world_size == num_workers:
return cfg
cfg = cfg.clone()
frozen = cfg.is_frozen()
cfg.defrost()
assert (
cfg.SOLVER.IMS_PER_BATCH % old_world_size == 0
), "Invalid REFERENCE_WORLD_SIZE in config!"
scale = num_workers / old_world_size
bs = cfg.SOLVER.IMS_PER_BATCH = int(round(cfg.SOLVER.IMS_PER_BATCH * scale))
lr = cfg.SOLVER.BASE_LR = cfg.SOLVER.BASE_LR * scale
max_iter = cfg.SOLVER.MAX_ITER = int(round(cfg.SOLVER.MAX_ITER / scale))
warmup_iter = cfg.SOLVER.WARMUP_ITERS = int(round(cfg.SOLVER.WARMUP_ITERS / scale))
cfg.SOLVER.STEPS = tuple(int(round(s / scale)) for s in cfg.SOLVER.STEPS)
cfg.TEST.EVAL_PERIOD = int(round(cfg.TEST.EVAL_PERIOD / scale))
cfg.SOLVER.CHECKPOINT_PERIOD = int(round(cfg.SOLVER.CHECKPOINT_PERIOD / scale))
cfg.SOLVER.REFERENCE_WORLD_SIZE = num_workers # maintain invariant
logger = logging.getLogger(__name__)
logger.info(
f"Auto-scaling the config to batch_size={bs}, learning_rate={lr}, "
f"max_iter={max_iter}, warmup={warmup_iter}."
)
if frozen:
cfg.freeze()
return cfg
# Access basic attributes from the underlying trainer
for _attr in ["model", "data_loader", "optimizer"]:
setattr(
DefaultTrainer,
_attr,
property(
# getter
lambda self, x=_attr: getattr(self._trainer, x),
# setter
lambda self, value, x=_attr: setattr(self._trainer, x, value),
),
)
|