File size: 26,907 Bytes
689a1f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.

"""
This file contains components with some default boilerplate logic user may need
in training / testing. They will not work for everyone, but many users may find them useful.

The behavior of functions/classes in this file is subject to change,
since they are meant to represent the "common default behavior" people need in their projects.
"""

import argparse
import logging
import os
import sys
import weakref
from collections import OrderedDict
from typing import Optional
import torch
from fvcore.nn.precise_bn import get_bn_modules
from omegaconf import OmegaConf
from torch.nn.parallel import DistributedDataParallel

import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import CfgNode, LazyConfig
from detectron2.data import (
    MetadataCatalog,
    build_detection_test_loader,
    build_detection_train_loader,
)
from detectron2.evaluation import (
    DatasetEvaluator,
    inference_on_dataset,
    print_csv_format,
    verify_results,
)
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler, build_optimizer
from detectron2.utils import comm
from detectron2.utils.collect_env import collect_env_info
from detectron2.utils.env import seed_all_rng
from detectron2.utils.events import CommonMetricPrinter, JSONWriter, TensorboardXWriter
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import setup_logger

from . import hooks
from .train_loop import AMPTrainer, SimpleTrainer, TrainerBase

__all__ = [
    "create_ddp_model",
    "default_argument_parser",
    "default_setup",
    "default_writers",
    "DefaultPredictor",
    "DefaultTrainer",
]


def create_ddp_model(model, *, fp16_compression=False, **kwargs):
    """
    Create a DistributedDataParallel model if there are >1 processes.

    Args:
        model: a torch.nn.Module
        fp16_compression: add fp16 compression hooks to the ddp object.
            See more at https://pytorch.org/docs/stable/ddp_comm_hooks.html#torch.distributed.algorithms.ddp_comm_hooks.default_hooks.fp16_compress_hook
        kwargs: other arguments of :module:`torch.nn.parallel.DistributedDataParallel`.
    """  # noqa
    if comm.get_world_size() == 1:
        return model
    if "device_ids" not in kwargs:
        kwargs["device_ids"] = [comm.get_local_rank()]
    ddp = DistributedDataParallel(model, **kwargs)
    if fp16_compression:
        from torch.distributed.algorithms.ddp_comm_hooks import default as comm_hooks

        ddp.register_comm_hook(state=None, hook=comm_hooks.fp16_compress_hook)
    return ddp


def default_argument_parser(epilog=None):
    """
    Create a parser with some common arguments used by detectron2 users.

    Args:
        epilog (str): epilog passed to ArgumentParser describing the usage.

    Returns:
        argparse.ArgumentParser:
    """
    parser = argparse.ArgumentParser(
        epilog=epilog
        or f"""
Examples:

Run on single machine:
    $ {sys.argv[0]} --num-gpus 8 --config-file cfg.yaml

Change some config options:
    $ {sys.argv[0]} --config-file cfg.yaml MODEL.WEIGHTS /path/to/weight.pth SOLVER.BASE_LR 0.001

Run on multiple machines:
    (machine0)$ {sys.argv[0]} --machine-rank 0 --num-machines 2 --dist-url <URL> [--other-flags]
    (machine1)$ {sys.argv[0]} --machine-rank 1 --num-machines 2 --dist-url <URL> [--other-flags]
""",
        formatter_class=argparse.RawDescriptionHelpFormatter,
    )
    parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
    parser.add_argument(
        "--resume",
        action="store_true",
        help="Whether to attempt to resume from the checkpoint directory. "
        "See documentation of `DefaultTrainer.resume_or_load()` for what it means.",
    )
    parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
    parser.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*")
    parser.add_argument("--num-machines", type=int, default=1, help="total number of machines")
    parser.add_argument(
        "--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)"
    )

    # PyTorch still may leave orphan processes in multi-gpu training.
    # Therefore we use a deterministic way to obtain port,
    # so that users are aware of orphan processes by seeing the port occupied.
    port = 2**15 + 2**14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2**14
    parser.add_argument(
        "--dist-url",
        default="tcp://127.0.0.1:{}".format(port),
        help="initialization URL for pytorch distributed backend. See "
        "https://pytorch.org/docs/stable/distributed.html for details.",
    )
    parser.add_argument(
        "opts",
        help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
        """.strip(),
        default=None,
        nargs=argparse.REMAINDER,
    )
    return parser


def _try_get_key(cfg, *keys, default=None):
    """
    Try select keys from cfg until the first key that exists. Otherwise return default.
    """
    if isinstance(cfg, CfgNode):
        cfg = OmegaConf.create(cfg.dump())
    for k in keys:
        none = object()
        p = OmegaConf.select(cfg, k, default=none)
        if p is not none:
            return p
    return default


def _highlight(code, filename):
    try:
        import pygments
    except ImportError:
        return code

    from pygments.lexers import Python3Lexer, YamlLexer
    from pygments.formatters import Terminal256Formatter

    lexer = Python3Lexer() if filename.endswith(".py") else YamlLexer()
    code = pygments.highlight(code, lexer, Terminal256Formatter(style="monokai"))
    return code


def default_setup(cfg, args):
    """
    Perform some basic common setups at the beginning of a job, including:

    1. Set up the detectron2 logger
    2. Log basic information about environment, cmdline arguments, and config
    3. Backup the config to the output directory

    Args:
        cfg (CfgNode or omegaconf.DictConfig): the full config to be used
        args (argparse.NameSpace): the command line arguments to be logged
    """
    output_dir = _try_get_key(cfg, "OUTPUT_DIR", "output_dir", "train.output_dir")
    if comm.is_main_process() and output_dir:
        PathManager.mkdirs(output_dir)

    rank = comm.get_rank()
    setup_logger(output_dir, distributed_rank=rank, name="fvcore")
    logger = setup_logger(output_dir, distributed_rank=rank)

    logger.info("Rank of current process: {}. World size: {}".format(rank, comm.get_world_size()))
    logger.info("Environment info:\n" + collect_env_info())

    logger.info("Command line arguments: " + str(args))
    if hasattr(args, "config_file") and args.config_file != "":
        logger.info(
            "Contents of args.config_file={}:\n{}".format(
                args.config_file,
                _highlight(PathManager.open(args.config_file, "r").read(), args.config_file),
            )
        )

    if comm.is_main_process() and output_dir:
        # Note: some of our scripts may expect the existence of
        # config.yaml in output directory
        path = os.path.join(output_dir, "config.yaml")
        if isinstance(cfg, CfgNode):
            logger.info("Running with full config:\n{}".format(_highlight(cfg.dump(), ".yaml")))
            with PathManager.open(path, "w") as f:
                f.write(cfg.dump())
        else:
            LazyConfig.save(cfg, path)
        logger.info("Full config saved to {}".format(path))

    # make sure each worker has a different, yet deterministic seed if specified
    seed = _try_get_key(cfg, "SEED", "train.seed", default=-1)
    seed_all_rng(None if seed < 0 else seed + rank)

    # cudnn benchmark has large overhead. It shouldn't be used considering the small size of
    # typical validation set.
    if not (hasattr(args, "eval_only") and args.eval_only):
        torch.backends.cudnn.benchmark = _try_get_key(
            cfg, "CUDNN_BENCHMARK", "train.cudnn_benchmark", default=False
        )


def default_writers(output_dir: str, max_iter: Optional[int] = None):
    """
    Build a list of :class:`EventWriter` to be used.
    It now consists of a :class:`CommonMetricPrinter`,
    :class:`TensorboardXWriter` and :class:`JSONWriter`.

    Args:
        output_dir: directory to store JSON metrics and tensorboard events
        max_iter: the total number of iterations

    Returns:
        list[EventWriter]: a list of :class:`EventWriter` objects.
    """
    PathManager.mkdirs(output_dir)
    return [
        # It may not always print what you want to see, since it prints "common" metrics only.
        CommonMetricPrinter(max_iter),
        JSONWriter(os.path.join(output_dir, "metrics.json")),
        TensorboardXWriter(output_dir),
    ]


class DefaultPredictor:
    """
    Create a simple end-to-end predictor with the given config that runs on
    single device for a single input image.

    Compared to using the model directly, this class does the following additions:

    1. Load checkpoint from `cfg.MODEL.WEIGHTS`.
    2. Always take BGR image as the input and apply conversion defined by `cfg.INPUT.FORMAT`.
    3. Apply resizing defined by `cfg.INPUT.{MIN,MAX}_SIZE_TEST`.
    4. Take one input image and produce a single output, instead of a batch.

    This is meant for simple demo purposes, so it does the above steps automatically.
    This is not meant for benchmarks or running complicated inference logic.
    If you'd like to do anything more complicated, please refer to its source code as
    examples to build and use the model manually.

    Attributes:
        metadata (Metadata): the metadata of the underlying dataset, obtained from
            cfg.DATASETS.TEST.

    Examples:
    ::
        pred = DefaultPredictor(cfg)
        inputs = cv2.imread("input.jpg")
        outputs = pred(inputs)
    """

    def __init__(self, cfg):
        self.cfg = cfg.clone()  # cfg can be modified by model
        self.model = build_model(self.cfg)
        self.model.eval()
        if len(cfg.DATASETS.TEST):
            self.metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0])

        checkpointer = DetectionCheckpointer(self.model)
        checkpointer.load(cfg.MODEL.WEIGHTS)

        self.aug = T.ResizeShortestEdge(
            [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
        )

        self.input_format = cfg.INPUT.FORMAT
        assert self.input_format in ["RGB", "BGR"], self.input_format

    def __call__(self, original_image):
        """
        Args:
            original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).

        Returns:
            predictions (dict):
                the output of the model for one image only.
                See :doc:`/tutorials/models` for details about the format.
        """
        with torch.no_grad():  # https://github.com/sphinx-doc/sphinx/issues/4258
            # Apply pre-processing to image.
            if self.input_format == "RGB":
                # whether the model expects BGR inputs or RGB
                original_image = original_image[:, :, ::-1]
            height, width = original_image.shape[:2]
            image = self.aug.get_transform(original_image).apply_image(original_image)
            image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
            image.to(self.cfg.MODEL.DEVICE)

            inputs = {"image": image, "height": height, "width": width}

            predictions = self.model([inputs])[0]
            return predictions


class DefaultTrainer(TrainerBase):
    """
    A trainer with default training logic. It does the following:

    1. Create a :class:`SimpleTrainer` using model, optimizer, dataloader
       defined by the given config. Create a LR scheduler defined by the config.
    2. Load the last checkpoint or `cfg.MODEL.WEIGHTS`, if exists, when
       `resume_or_load` is called.
    3. Register a few common hooks defined by the config.

    It is created to simplify the **standard model training workflow** and reduce code boilerplate
    for users who only need the standard training workflow, with standard features.
    It means this class makes *many assumptions* about your training logic that
    may easily become invalid in a new research. In fact, any assumptions beyond those made in the
    :class:`SimpleTrainer` are too much for research.

    The code of this class has been annotated about restrictive assumptions it makes.
    When they do not work for you, you're encouraged to:

    1. Overwrite methods of this class, OR:
    2. Use :class:`SimpleTrainer`, which only does minimal SGD training and
       nothing else. You can then add your own hooks if needed. OR:
    3. Write your own training loop similar to `tools/plain_train_net.py`.

    See the :doc:`/tutorials/training` tutorials for more details.

    Note that the behavior of this class, like other functions/classes in
    this file, is not stable, since it is meant to represent the "common default behavior".
    It is only guaranteed to work well with the standard models and training workflow in detectron2.
    To obtain more stable behavior, write your own training logic with other public APIs.

    Examples:
    ::
        trainer = DefaultTrainer(cfg)
        trainer.resume_or_load()  # load last checkpoint or MODEL.WEIGHTS
        trainer.train()

    Attributes:
        scheduler:
        checkpointer (DetectionCheckpointer):
        cfg (CfgNode):
    """

    def __init__(self, cfg):
        """
        Args:
            cfg (CfgNode):
        """
        super().__init__()
        logger = logging.getLogger("detectron2")
        if not logger.isEnabledFor(logging.INFO):  # setup_logger is not called for d2
            setup_logger()
        cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size())

        # Assume these objects must be constructed in this order.
        model = self.build_model(cfg)
        optimizer = self.build_optimizer(cfg, model)
        data_loader = self.build_train_loader(cfg)

        model = create_ddp_model(model, broadcast_buffers=False)
        self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(
            model, data_loader, optimizer
        )

        self.scheduler = self.build_lr_scheduler(cfg, optimizer)
        self.checkpointer = DetectionCheckpointer(
            # Assume you want to save checkpoints together with logs/statistics
            model,
            cfg.OUTPUT_DIR,
            trainer=weakref.proxy(self),
        )
        self.start_iter = 0
        self.max_iter = cfg.SOLVER.MAX_ITER
        self.cfg = cfg

        self.register_hooks(self.build_hooks())

    def resume_or_load(self, resume=True):
        """
        If `resume==True` and `cfg.OUTPUT_DIR` contains the last checkpoint (defined by
        a `last_checkpoint` file), resume from the file. Resuming means loading all
        available states (eg. optimizer and scheduler) and update iteration counter
        from the checkpoint. ``cfg.MODEL.WEIGHTS`` will not be used.

        Otherwise, this is considered as an independent training. The method will load model
        weights from the file `cfg.MODEL.WEIGHTS` (but will not load other states) and start
        from iteration 0.

        Args:
            resume (bool): whether to do resume or not
        """
        self.checkpointer.resume_or_load(self.cfg.MODEL.WEIGHTS, resume=resume)
        if resume and self.checkpointer.has_checkpoint():
            # The checkpoint stores the training iteration that just finished, thus we start
            # at the next iteration
            self.start_iter = self.iter + 1

    def build_hooks(self):
        """
        Build a list of default hooks, including timing, evaluation,
        checkpointing, lr scheduling, precise BN, writing events.

        Returns:
            list[HookBase]:
        """
        cfg = self.cfg.clone()
        cfg.defrost()
        cfg.DATALOADER.NUM_WORKERS = 0  # save some memory and time for PreciseBN

        ret = [
            hooks.IterationTimer(),
            hooks.LRScheduler(),
            hooks.PreciseBN(
                # Run at the same freq as (but before) evaluation.
                cfg.TEST.EVAL_PERIOD,
                self.model,
                # Build a new data loader to not affect training
                self.build_train_loader(cfg),
                cfg.TEST.PRECISE_BN.NUM_ITER,
            )
            if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model)
            else None,
        ]

        # Do PreciseBN before checkpointer, because it updates the model and need to
        # be saved by checkpointer.
        # This is not always the best: if checkpointing has a different frequency,
        # some checkpoints may have more precise statistics than others.
        if comm.is_main_process():
            ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD))

        def test_and_save_results():
            self._last_eval_results = self.test(self.cfg, self.model)
            return self._last_eval_results

        # Do evaluation after checkpointer, because then if it fails,
        # we can use the saved checkpoint to debug.
        ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))

        if comm.is_main_process():
            # Here the default print/log frequency of each writer is used.
            # run writers in the end, so that evaluation metrics are written
            ret.append(hooks.PeriodicWriter(self.build_writers(), period=20))
        return ret

    def build_writers(self):
        """
        Build a list of writers to be used using :func:`default_writers()`.
        If you'd like a different list of writers, you can overwrite it in
        your trainer.

        Returns:
            list[EventWriter]: a list of :class:`EventWriter` objects.
        """
        return default_writers(self.cfg.OUTPUT_DIR, self.max_iter)

    def train(self):
        """
        Run training.

        Returns:
            OrderedDict of results, if evaluation is enabled. Otherwise None.
        """
        super().train(self.start_iter, self.max_iter)
        if len(self.cfg.TEST.EXPECTED_RESULTS) and comm.is_main_process():
            assert hasattr(
                self, "_last_eval_results"
            ), "No evaluation results obtained during training!"
            verify_results(self.cfg, self._last_eval_results)
            return self._last_eval_results

    def run_step(self):
        self._trainer.iter = self.iter
        self._trainer.run_step()

    def state_dict(self):
        ret = super().state_dict()
        ret["_trainer"] = self._trainer.state_dict()
        return ret

    def load_state_dict(self, state_dict):
        super().load_state_dict(state_dict)
        self._trainer.load_state_dict(state_dict["_trainer"])

    @classmethod
    def build_model(cls, cfg):
        """
        Returns:
            torch.nn.Module:

        It now calls :func:`detectron2.modeling.build_model`.
        Overwrite it if you'd like a different model.
        """
        model = build_model(cfg)
        logger = logging.getLogger(__name__)
        logger.info("Model:\n{}".format(model))
        return model

    @classmethod
    def build_optimizer(cls, cfg, model):
        """
        Returns:
            torch.optim.Optimizer:

        It now calls :func:`detectron2.solver.build_optimizer`.
        Overwrite it if you'd like a different optimizer.
        """
        return build_optimizer(cfg, model)

    @classmethod
    def build_lr_scheduler(cls, cfg, optimizer):
        """
        It now calls :func:`detectron2.solver.build_lr_scheduler`.
        Overwrite it if you'd like a different scheduler.
        """
        return build_lr_scheduler(cfg, optimizer)

    @classmethod
    def build_train_loader(cls, cfg):
        """
        Returns:
            iterable

        It now calls :func:`detectron2.data.build_detection_train_loader`.
        Overwrite it if you'd like a different data loader.
        """
        return build_detection_train_loader(cfg)

    @classmethod
    def build_test_loader(cls, cfg, dataset_name):
        """
        Returns:
            iterable

        It now calls :func:`detectron2.data.build_detection_test_loader`.
        Overwrite it if you'd like a different data loader.
        """
        return build_detection_test_loader(cfg, dataset_name)

    @classmethod
    def build_evaluator(cls, cfg, dataset_name):
        """
        Returns:
            DatasetEvaluator or None

        It is not implemented by default.
        """
        raise NotImplementedError(
            """
If you want DefaultTrainer to automatically run evaluation,
please implement `build_evaluator()` in subclasses (see train_net.py for example).
Alternatively, you can call evaluation functions yourself (see Colab balloon tutorial for example).
"""
        )

    @classmethod
    def test(cls, cfg, model, evaluators=None):
        """
        Evaluate the given model. The given model is expected to already contain
        weights to evaluate.

        Args:
            cfg (CfgNode):
            model (nn.Module):
            evaluators (list[DatasetEvaluator] or None): if None, will call
                :meth:`build_evaluator`. Otherwise, must have the same length as
                ``cfg.DATASETS.TEST``.

        Returns:
            dict: a dict of result metrics
        """
        logger = logging.getLogger(__name__)
        if isinstance(evaluators, DatasetEvaluator):
            evaluators = [evaluators]
        if evaluators is not None:
            assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format(
                len(cfg.DATASETS.TEST), len(evaluators)
            )

        results = OrderedDict()
        for idx, dataset_name in enumerate(cfg.DATASETS.TEST):
            data_loader = cls.build_test_loader(cfg, dataset_name)
            # When evaluators are passed in as arguments,
            # implicitly assume that evaluators can be created before data_loader.
            if evaluators is not None:
                evaluator = evaluators[idx]
            else:
                try:
                    evaluator = cls.build_evaluator(cfg, dataset_name)
                except NotImplementedError:
                    logger.warn(
                        "No evaluator found. Use `DefaultTrainer.test(evaluators=)`, "
                        "or implement its `build_evaluator` method."
                    )
                    results[dataset_name] = {}
                    continue
            results_i = inference_on_dataset(model, data_loader, evaluator)
            results[dataset_name] = results_i
            if comm.is_main_process():
                assert isinstance(
                    results_i, dict
                ), "Evaluator must return a dict on the main process. Got {} instead.".format(
                    results_i
                )
                logger.info("Evaluation results for {} in csv format:".format(dataset_name))
                print_csv_format(results_i)

        if len(results) == 1:
            results = list(results.values())[0]
        return results

    @staticmethod
    def auto_scale_workers(cfg, num_workers: int):
        """
        When the config is defined for certain number of workers (according to
        ``cfg.SOLVER.REFERENCE_WORLD_SIZE``) that's different from the number of
        workers currently in use, returns a new cfg where the total batch size
        is scaled so that the per-GPU batch size stays the same as the
        original ``IMS_PER_BATCH // REFERENCE_WORLD_SIZE``.

        Other config options are also scaled accordingly:
        * training steps and warmup steps are scaled inverse proportionally.
        * learning rate are scaled proportionally, following :paper:`ImageNet in 1h`.

        For example, with the original config like the following:

        .. code-block:: yaml

            IMS_PER_BATCH: 16
            BASE_LR: 0.1
            REFERENCE_WORLD_SIZE: 8
            MAX_ITER: 5000
            STEPS: (4000,)
            CHECKPOINT_PERIOD: 1000

        When this config is used on 16 GPUs instead of the reference number 8,
        calling this method will return a new config with:

        .. code-block:: yaml

            IMS_PER_BATCH: 32
            BASE_LR: 0.2
            REFERENCE_WORLD_SIZE: 16
            MAX_ITER: 2500
            STEPS: (2000,)
            CHECKPOINT_PERIOD: 500

        Note that both the original config and this new config can be trained on 16 GPUs.
        It's up to user whether to enable this feature (by setting ``REFERENCE_WORLD_SIZE``).

        Returns:
            CfgNode: a new config. Same as original if ``cfg.SOLVER.REFERENCE_WORLD_SIZE==0``.
        """
        old_world_size = cfg.SOLVER.REFERENCE_WORLD_SIZE
        if old_world_size == 0 or old_world_size == num_workers:
            return cfg
        cfg = cfg.clone()
        frozen = cfg.is_frozen()
        cfg.defrost()

        assert (
            cfg.SOLVER.IMS_PER_BATCH % old_world_size == 0
        ), "Invalid REFERENCE_WORLD_SIZE in config!"
        scale = num_workers / old_world_size
        bs = cfg.SOLVER.IMS_PER_BATCH = int(round(cfg.SOLVER.IMS_PER_BATCH * scale))
        lr = cfg.SOLVER.BASE_LR = cfg.SOLVER.BASE_LR * scale
        max_iter = cfg.SOLVER.MAX_ITER = int(round(cfg.SOLVER.MAX_ITER / scale))
        warmup_iter = cfg.SOLVER.WARMUP_ITERS = int(round(cfg.SOLVER.WARMUP_ITERS / scale))
        cfg.SOLVER.STEPS = tuple(int(round(s / scale)) for s in cfg.SOLVER.STEPS)
        cfg.TEST.EVAL_PERIOD = int(round(cfg.TEST.EVAL_PERIOD / scale))
        cfg.SOLVER.CHECKPOINT_PERIOD = int(round(cfg.SOLVER.CHECKPOINT_PERIOD / scale))
        cfg.SOLVER.REFERENCE_WORLD_SIZE = num_workers  # maintain invariant
        logger = logging.getLogger(__name__)
        logger.info(
            f"Auto-scaling the config to batch_size={bs}, learning_rate={lr}, "
            f"max_iter={max_iter}, warmup={warmup_iter}."
        )

        if frozen:
            cfg.freeze()
        return cfg


# Access basic attributes from the underlying trainer
for _attr in ["model", "data_loader", "optimizer"]:
    setattr(
        DefaultTrainer,
        _attr,
        property(
            # getter
            lambda self, x=_attr: getattr(self._trainer, x),
            # setter
            lambda self, value, x=_attr: setattr(self._trainer, x, value),
        ),
    )