Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,709 Bytes
d4f8fc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import logging
import unittest
import torch
from detectron2.config import get_cfg
from detectron2.modeling.backbone import build_backbone
from detectron2.modeling.proposal_generator.build import build_proposal_generator
from detectron2.modeling.proposal_generator.rpn_outputs import find_top_rpn_proposals
from detectron2.structures import Boxes, ImageList, Instances, RotatedBoxes
from detectron2.utils.events import EventStorage
logger = logging.getLogger(__name__)
class RPNTest(unittest.TestCase):
def test_rpn(self):
torch.manual_seed(121)
cfg = get_cfg()
cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RPN"
cfg.MODEL.ANCHOR_GENERATOR.NAME = "DefaultAnchorGenerator"
cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1)
backbone = build_backbone(cfg)
proposal_generator = build_proposal_generator(cfg, backbone.output_shape())
num_images = 2
images_tensor = torch.rand(num_images, 20, 30)
image_sizes = [(10, 10), (20, 30)]
images = ImageList(images_tensor, image_sizes)
image_shape = (15, 15)
num_channels = 1024
features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32)
gt_instances = Instances(image_shape)
gt_instances.gt_boxes = Boxes(gt_boxes)
with EventStorage(): # capture events in a new storage to discard them
proposals, proposal_losses = proposal_generator(
images, features, [gt_instances[0], gt_instances[1]]
)
expected_losses = {
"loss_rpn_cls": torch.tensor(0.0804563984),
"loss_rpn_loc": torch.tensor(0.0990132466),
}
for name in expected_losses.keys():
err_msg = "proposal_losses[{}] = {}, expected losses = {}".format(
name, proposal_losses[name], expected_losses[name]
)
self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg)
expected_proposal_boxes = [
Boxes(torch.tensor([[0, 0, 10, 10], [7.3365392685, 0, 10, 10]])),
Boxes(
torch.tensor(
[
[0, 0, 30, 20],
[0, 0, 16.7862777710, 13.1362524033],
[0, 0, 30, 13.3173446655],
[0, 0, 10.8602609634, 20],
[7.7165775299, 0, 27.3875980377, 20],
]
)
),
]
expected_objectness_logits = [
torch.tensor([0.1225359365, -0.0133192837]),
torch.tensor([0.1415634006, 0.0989848152, 0.0565387346, -0.0072308783, -0.0428492837]),
]
for proposal, expected_proposal_box, im_size, expected_objectness_logit in zip(
proposals, expected_proposal_boxes, image_sizes, expected_objectness_logits
):
self.assertEqual(len(proposal), len(expected_proposal_box))
self.assertEqual(proposal.image_size, im_size)
self.assertTrue(
torch.allclose(proposal.proposal_boxes.tensor, expected_proposal_box.tensor)
)
self.assertTrue(torch.allclose(proposal.objectness_logits, expected_objectness_logit))
def test_rrpn(self):
torch.manual_seed(121)
cfg = get_cfg()
cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN"
cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator"
cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]]
cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1]]
cfg.MODEL.ANCHOR_GENERATOR.ANGLES = [[0, 60]]
cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1)
cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead"
backbone = build_backbone(cfg)
proposal_generator = build_proposal_generator(cfg, backbone.output_shape())
num_images = 2
images_tensor = torch.rand(num_images, 20, 30)
image_sizes = [(10, 10), (20, 30)]
images = ImageList(images_tensor, image_sizes)
image_shape = (15, 15)
num_channels = 1024
features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]], dtype=torch.float32)
gt_instances = Instances(image_shape)
gt_instances.gt_boxes = RotatedBoxes(gt_boxes)
with EventStorage(): # capture events in a new storage to discard them
proposals, proposal_losses = proposal_generator(
images, features, [gt_instances[0], gt_instances[1]]
)
expected_losses = {
"loss_rpn_cls": torch.tensor(0.043263837695121765),
"loss_rpn_loc": torch.tensor(0.14432406425476074),
}
for name in expected_losses.keys():
err_msg = "proposal_losses[{}] = {}, expected losses = {}".format(
name, proposal_losses[name], expected_losses[name]
)
self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg)
expected_proposal_boxes = [
RotatedBoxes(
torch.tensor(
[
[0.60189795, 1.24095452, 61.98131943, 18.03621292, -4.07244873],
[15.64940453, 1.69624567, 59.59749603, 16.34339333, 2.62692475],
[-3.02982378, -2.69752932, 67.90952301, 59.62455750, 59.97010040],
[16.71863365, 1.98309708, 35.61507797, 32.81484985, 62.92267227],
[0.49432933, -7.92979717, 67.77606201, 62.93098450, -1.85656738],
[8.00880814, 1.36017394, 121.81007385, 32.74150467, 50.44297409],
[16.44299889, -4.82221127, 63.39775848, 61.22503662, 54.12270737],
[5.00000000, 5.00000000, 10.00000000, 10.00000000, -0.76943970],
[17.64130402, -0.98095351, 61.40377808, 16.28918839, 55.53118134],
[0.13016054, 4.60568953, 35.80157471, 32.30180359, 62.52872086],
[-4.26460743, 0.39604485, 124.30079651, 31.84611320, -1.58203125],
[7.52815342, -0.91636634, 62.39784622, 15.45565224, 60.79549789],
]
)
),
RotatedBoxes(
torch.tensor(
[
[0.07734215, 0.81635046, 65.33510590, 17.34688377, -1.51821899],
[-3.41833067, -3.11320257, 64.17595673, 60.55617905, 58.27033234],
[20.67383385, -6.16561556, 63.60531998, 62.52315903, 54.85546494],
[15.00000000, 10.00000000, 30.00000000, 20.00000000, -0.18218994],
[9.22646523, -6.84775209, 62.09895706, 65.46472931, -2.74307251],
[15.00000000, 4.93451595, 30.00000000, 9.86903191, -0.60272217],
[8.88342094, 2.65560246, 120.95362854, 32.45022202, 55.75970078],
[16.39088631, 2.33887148, 34.78761292, 35.61492920, 60.81977463],
[9.78298569, 10.00000000, 19.56597137, 20.00000000, -0.86660767],
[1.28576660, 5.49873352, 34.93610382, 33.22600174, 60.51599884],
[17.58912468, -1.63270092, 62.96052551, 16.45713997, 52.91245270],
[5.64749718, -1.90428460, 62.37649155, 16.19474792, 61.09543991],
[0.82255805, 2.34931135, 118.83985901, 32.83671188, 56.50753784],
[-5.33874989, 1.64404404, 125.28501892, 33.35424042, -2.80731201],
]
)
),
]
expected_objectness_logits = [
torch.tensor(
[
0.10111768,
0.09112845,
0.08466332,
0.07589971,
0.06650183,
0.06350251,
0.04299347,
0.01864817,
0.00986163,
0.00078543,
-0.04573630,
-0.04799230,
]
),
torch.tensor(
[
0.11373727,
0.09377633,
0.05281663,
0.05143715,
0.04040275,
0.03250912,
0.01307789,
0.01177734,
0.00038105,
-0.00540255,
-0.01194804,
-0.01461012,
-0.03061717,
-0.03599222,
]
),
]
torch.set_printoptions(precision=8, sci_mode=False)
for proposal, expected_proposal_box, im_size, expected_objectness_logit in zip(
proposals, expected_proposal_boxes, image_sizes, expected_objectness_logits
):
self.assertEqual(len(proposal), len(expected_proposal_box))
self.assertEqual(proposal.image_size, im_size)
# It seems that there's some randomness in the result across different machines:
# This test can be run on a local machine for 100 times with exactly the same result,
# However, a different machine might produce slightly different results,
# thus the atol here.
err_msg = "computed proposal boxes = {}, expected {}".format(
proposal.proposal_boxes.tensor, expected_proposal_box.tensor
)
self.assertTrue(
torch.allclose(
proposal.proposal_boxes.tensor, expected_proposal_box.tensor, atol=1e-5
),
err_msg,
)
err_msg = "computed objectness logits = {}, expected {}".format(
proposal.objectness_logits, expected_objectness_logit
)
self.assertTrue(
torch.allclose(proposal.objectness_logits, expected_objectness_logit, atol=1e-5),
err_msg,
)
def test_rpn_proposals_inf(self):
N, Hi, Wi, A = 3, 3, 3, 3
proposals = [torch.rand(N, Hi * Wi * A, 4)]
pred_logits = [torch.rand(N, Hi * Wi * A)]
pred_logits[0][1][3:5].fill_(float("inf"))
images = ImageList.from_tensors([torch.rand(3, 10, 10)] * 3)
find_top_rpn_proposals(proposals, pred_logits, images, 0.5, 1000, 1000, 0, False)
if __name__ == "__main__":
unittest.main()
|