Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import CfgNode | |
from detectron2.layers import Conv2d | |
from ..utils import initialize_module_params | |
from .registry import ROI_DENSEPOSE_HEAD_REGISTRY | |
class DensePoseV1ConvXHead(nn.Module): | |
""" | |
Fully convolutional DensePose head. | |
""" | |
def __init__(self, cfg: CfgNode, input_channels: int): | |
""" | |
Initialize DensePose fully convolutional head | |
Args: | |
cfg (CfgNode): configuration options | |
input_channels (int): number of input channels | |
""" | |
super(DensePoseV1ConvXHead, self).__init__() | |
# fmt: off | |
hidden_dim = cfg.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_DIM | |
kernel_size = cfg.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_KERNEL | |
self.n_stacked_convs = cfg.MODEL.ROI_DENSEPOSE_HEAD.NUM_STACKED_CONVS | |
# fmt: on | |
pad_size = kernel_size // 2 | |
n_channels = input_channels | |
for i in range(self.n_stacked_convs): | |
layer = Conv2d(n_channels, hidden_dim, kernel_size, stride=1, padding=pad_size) | |
layer_name = self._get_layer_name(i) | |
self.add_module(layer_name, layer) | |
n_channels = hidden_dim | |
self.n_out_channels = n_channels | |
initialize_module_params(self) | |
def forward(self, features: torch.Tensor): | |
""" | |
Apply DensePose fully convolutional head to the input features | |
Args: | |
features (tensor): input features | |
Result: | |
A tensor of DensePose head outputs | |
""" | |
x = features | |
output = x | |
for i in range(self.n_stacked_convs): | |
layer_name = self._get_layer_name(i) | |
x = getattr(self, layer_name)(x) | |
x = F.relu(x) | |
output = x | |
return output | |
def _get_layer_name(self, i: int): | |
layer_name = "body_conv_fcn{}".format(i + 1) | |
return layer_name | |