Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import math | |
from typing import Any, List | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import CfgNode | |
from detectron2.structures import Instances | |
from .. import DensePoseConfidenceModelConfig, DensePoseUVConfidenceType | |
from .chart import DensePoseChartLoss | |
from .registry import DENSEPOSE_LOSS_REGISTRY | |
from .utils import BilinearInterpolationHelper, LossDict | |
class DensePoseChartWithConfidenceLoss(DensePoseChartLoss): | |
""" """ | |
def __init__(self, cfg: CfgNode): | |
super().__init__(cfg) | |
self.confidence_model_cfg = DensePoseConfidenceModelConfig.from_cfg(cfg) | |
if self.confidence_model_cfg.uv_confidence.type == DensePoseUVConfidenceType.IID_ISO: | |
self.uv_loss_with_confidences = IIDIsotropicGaussianUVLoss( | |
self.confidence_model_cfg.uv_confidence.epsilon | |
) | |
elif self.confidence_model_cfg.uv_confidence.type == DensePoseUVConfidenceType.INDEP_ANISO: | |
self.uv_loss_with_confidences = IndepAnisotropicGaussianUVLoss( | |
self.confidence_model_cfg.uv_confidence.epsilon | |
) | |
def produce_fake_densepose_losses_uv(self, densepose_predictor_outputs: Any) -> LossDict: | |
""" | |
Overrides fake losses for fine segmentation and U/V coordinates to | |
include computation graphs for additional confidence parameters. | |
These are used when no suitable ground truth data was found in a batch. | |
The loss has a value 0 and is primarily used to construct the computation graph, | |
so that `DistributedDataParallel` has similar graphs on all GPUs and can | |
perform reduction properly. | |
Args: | |
densepose_predictor_outputs: DensePose predictor outputs, an object | |
of a dataclass that is assumed to have the following attributes: | |
* fine_segm - fine segmentation estimates, tensor of shape [N, C, S, S] | |
* u - U coordinate estimates per fine labels, tensor of shape [N, C, S, S] | |
* v - V coordinate estimates per fine labels, tensor of shape [N, C, S, S] | |
Return: | |
dict: str -> tensor: dict of losses with the following entries: | |
* `loss_densepose_U`: has value 0 | |
* `loss_densepose_V`: has value 0 | |
* `loss_densepose_I`: has value 0 | |
""" | |
conf_type = self.confidence_model_cfg.uv_confidence.type | |
if self.confidence_model_cfg.uv_confidence.enabled: | |
loss_uv = ( | |
densepose_predictor_outputs.u.sum() + densepose_predictor_outputs.v.sum() | |
) * 0 | |
if conf_type == DensePoseUVConfidenceType.IID_ISO: | |
loss_uv += densepose_predictor_outputs.sigma_2.sum() * 0 | |
elif conf_type == DensePoseUVConfidenceType.INDEP_ANISO: | |
loss_uv += ( | |
densepose_predictor_outputs.sigma_2.sum() | |
+ densepose_predictor_outputs.kappa_u.sum() | |
+ densepose_predictor_outputs.kappa_v.sum() | |
) * 0 | |
return {"loss_densepose_UV": loss_uv} | |
else: | |
return super().produce_fake_densepose_losses_uv(densepose_predictor_outputs) | |
def produce_densepose_losses_uv( | |
self, | |
proposals_with_gt: List[Instances], | |
densepose_predictor_outputs: Any, | |
packed_annotations: Any, | |
interpolator: BilinearInterpolationHelper, | |
j_valid_fg: torch.Tensor, | |
) -> LossDict: | |
conf_type = self.confidence_model_cfg.uv_confidence.type | |
if self.confidence_model_cfg.uv_confidence.enabled: | |
u_gt = packed_annotations.u_gt[j_valid_fg] | |
u_est = interpolator.extract_at_points(densepose_predictor_outputs.u)[j_valid_fg] | |
v_gt = packed_annotations.v_gt[j_valid_fg] | |
v_est = interpolator.extract_at_points(densepose_predictor_outputs.v)[j_valid_fg] | |
sigma_2_est = interpolator.extract_at_points(densepose_predictor_outputs.sigma_2)[ | |
j_valid_fg | |
] | |
if conf_type == DensePoseUVConfidenceType.IID_ISO: | |
return { | |
"loss_densepose_UV": ( | |
self.uv_loss_with_confidences(u_est, v_est, sigma_2_est, u_gt, v_gt) | |
* self.w_points | |
) | |
} | |
elif conf_type in [DensePoseUVConfidenceType.INDEP_ANISO]: | |
kappa_u_est = interpolator.extract_at_points(densepose_predictor_outputs.kappa_u)[ | |
j_valid_fg | |
] | |
kappa_v_est = interpolator.extract_at_points(densepose_predictor_outputs.kappa_v)[ | |
j_valid_fg | |
] | |
return { | |
"loss_densepose_UV": ( | |
self.uv_loss_with_confidences( | |
u_est, v_est, sigma_2_est, kappa_u_est, kappa_v_est, u_gt, v_gt | |
) | |
* self.w_points | |
) | |
} | |
return super().produce_densepose_losses_uv( | |
proposals_with_gt, | |
densepose_predictor_outputs, | |
packed_annotations, | |
interpolator, | |
j_valid_fg, | |
) | |
class IIDIsotropicGaussianUVLoss(nn.Module): | |
""" | |
Loss for the case of iid residuals with isotropic covariance: | |
$Sigma_i = sigma_i^2 I$ | |
The loss (negative log likelihood) is then: | |
$1/2 sum_{i=1}^n (log(2 pi) + 2 log sigma_i^2 + ||delta_i||^2 / sigma_i^2)$, | |
where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates | |
difference between estimated and ground truth UV values | |
For details, see: | |
N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning | |
Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019 | |
""" | |
def __init__(self, sigma_lower_bound: float): | |
super(IIDIsotropicGaussianUVLoss, self).__init__() | |
self.sigma_lower_bound = sigma_lower_bound | |
self.log2pi = math.log(2 * math.pi) | |
def forward( | |
self, | |
u: torch.Tensor, | |
v: torch.Tensor, | |
sigma_u: torch.Tensor, | |
target_u: torch.Tensor, | |
target_v: torch.Tensor, | |
): | |
# compute $\sigma_i^2$ | |
# use sigma_lower_bound to avoid degenerate solution for variance | |
# (sigma -> 0) | |
sigma2 = F.softplus(sigma_u) + self.sigma_lower_bound | |
# compute \|delta_i\|^2 | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. | |
delta_t_delta = (u - target_u) ** 2 + (v - target_v) ** 2 | |
# the total loss from the formula above: | |
loss = 0.5 * (self.log2pi + 2 * torch.log(sigma2) + delta_t_delta / sigma2) | |
return loss.sum() | |
class IndepAnisotropicGaussianUVLoss(nn.Module): | |
""" | |
Loss for the case of independent residuals with anisotropic covariances: | |
$Sigma_i = sigma_i^2 I + r_i r_i^T$ | |
The loss (negative log likelihood) is then: | |
$1/2 sum_{i=1}^n (log(2 pi) | |
+ log sigma_i^2 (sigma_i^2 + ||r_i||^2) | |
+ ||delta_i||^2 / sigma_i^2 | |
- <delta_i, r_i>^2 / (sigma_i^2 * (sigma_i^2 + ||r_i||^2)))$, | |
where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates | |
difference between estimated and ground truth UV values | |
For details, see: | |
N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning | |
Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019 | |
""" | |
def __init__(self, sigma_lower_bound: float): | |
super(IndepAnisotropicGaussianUVLoss, self).__init__() | |
self.sigma_lower_bound = sigma_lower_bound | |
self.log2pi = math.log(2 * math.pi) | |
def forward( | |
self, | |
u: torch.Tensor, | |
v: torch.Tensor, | |
sigma_u: torch.Tensor, | |
kappa_u_est: torch.Tensor, | |
kappa_v_est: torch.Tensor, | |
target_u: torch.Tensor, | |
target_v: torch.Tensor, | |
): | |
# compute $\sigma_i^2$ | |
sigma2 = F.softplus(sigma_u) + self.sigma_lower_bound | |
# compute \|r_i\|^2 | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. | |
r_sqnorm2 = kappa_u_est**2 + kappa_v_est**2 | |
delta_u = u - target_u | |
delta_v = v - target_v | |
# compute \|delta_i\|^2 | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. | |
delta_sqnorm = delta_u**2 + delta_v**2 | |
delta_u_r_u = delta_u * kappa_u_est | |
delta_v_r_v = delta_v * kappa_v_est | |
# compute the scalar product <delta_i, r_i> | |
delta_r = delta_u_r_u + delta_v_r_v | |
# compute squared scalar product <delta_i, r_i>^2 | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. | |
delta_r_sqnorm = delta_r**2 | |
denom2 = sigma2 * (sigma2 + r_sqnorm2) | |
loss = 0.5 * ( | |
self.log2pi + torch.log(denom2) + delta_sqnorm / sigma2 - delta_r_sqnorm / denom2 | |
) | |
return loss.sum() | |