Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import copy | |
import logging | |
import os | |
import torch | |
from caffe2.proto import caffe2_pb2 | |
from torch import nn | |
from detectron2.config import CfgNode | |
from detectron2.utils.file_io import PathManager | |
from .caffe2_inference import ProtobufDetectionModel | |
from .caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP, convert_batched_inputs_to_c2_format | |
from .shared import get_pb_arg_vali, get_pb_arg_vals, save_graph | |
__all__ = [ | |
"Caffe2Model", | |
"Caffe2Tracer", | |
] | |
class Caffe2Tracer: | |
""" | |
Make a detectron2 model traceable with Caffe2 operators. | |
This class creates a traceable version of a detectron2 model which: | |
1. Rewrite parts of the model using ops in Caffe2. Note that some ops do | |
not have GPU implementation in Caffe2. | |
2. Remove post-processing and only produce raw layer outputs | |
After making a traceable model, the class provide methods to export such a | |
model to different deployment formats. | |
Exported graph produced by this class take two input tensors: | |
1. (1, C, H, W) float "data" which is an image (usually in [0, 255]). | |
(H, W) often has to be padded to multiple of 32 (depend on the model | |
architecture). | |
2. 1x3 float "im_info", each row of which is (height, width, 1.0). | |
Height and width are true image shapes before padding. | |
The class currently only supports models using builtin meta architectures. | |
Batch inference is not supported, and contributions are welcome. | |
""" | |
def __init__(self, cfg: CfgNode, model: nn.Module, inputs): | |
""" | |
Args: | |
cfg (CfgNode): a detectron2 config used to construct caffe2-compatible model. | |
model (nn.Module): An original pytorch model. Must be among a few official models | |
in detectron2 that can be converted to become caffe2-compatible automatically. | |
Weights have to be already loaded to this model. | |
inputs: sample inputs that the given model takes for inference. | |
Will be used to trace the model. For most models, random inputs with | |
no detected objects will not work as they lead to wrong traces. | |
""" | |
assert isinstance(cfg, CfgNode), cfg | |
assert isinstance(model, torch.nn.Module), type(model) | |
# TODO make it support custom models, by passing in c2 model directly | |
C2MetaArch = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[cfg.MODEL.META_ARCHITECTURE] | |
self.traceable_model = C2MetaArch(cfg, copy.deepcopy(model)) | |
self.inputs = inputs | |
self.traceable_inputs = self.traceable_model.get_caffe2_inputs(inputs) | |
def export_caffe2(self): | |
""" | |
Export the model to Caffe2's protobuf format. | |
The returned object can be saved with its :meth:`.save_protobuf()` method. | |
The result can be loaded and executed using Caffe2 runtime. | |
Returns: | |
:class:`Caffe2Model` | |
""" | |
from .caffe2_export import export_caffe2_detection_model | |
predict_net, init_net = export_caffe2_detection_model( | |
self.traceable_model, self.traceable_inputs | |
) | |
return Caffe2Model(predict_net, init_net) | |
def export_onnx(self): | |
""" | |
Export the model to ONNX format. | |
Note that the exported model contains custom ops only available in caffe2, therefore it | |
cannot be directly executed by other runtime (such as onnxruntime or TensorRT). | |
Post-processing or transformation passes may be applied on the model to accommodate | |
different runtimes, but we currently do not provide support for them. | |
Returns: | |
onnx.ModelProto: an onnx model. | |
""" | |
from .caffe2_export import export_onnx_model as export_onnx_model_impl | |
return export_onnx_model_impl(self.traceable_model, (self.traceable_inputs,)) | |
def export_torchscript(self): | |
""" | |
Export the model to a ``torch.jit.TracedModule`` by tracing. | |
The returned object can be saved to a file by ``.save()``. | |
Returns: | |
torch.jit.TracedModule: a torch TracedModule | |
""" | |
logger = logging.getLogger(__name__) | |
logger.info("Tracing the model with torch.jit.trace ...") | |
with torch.no_grad(): | |
return torch.jit.trace(self.traceable_model, (self.traceable_inputs,)) | |
class Caffe2Model(nn.Module): | |
""" | |
A wrapper around the traced model in Caffe2's protobuf format. | |
The exported graph has different inputs/outputs from the original Pytorch | |
model, as explained in :class:`Caffe2Tracer`. This class wraps around the | |
exported graph to simulate the same interface as the original Pytorch model. | |
It also provides functions to save/load models in Caffe2's format.' | |
Examples: | |
:: | |
c2_model = Caffe2Tracer(cfg, torch_model, inputs).export_caffe2() | |
inputs = [{"image": img_tensor_CHW}] | |
outputs = c2_model(inputs) | |
orig_outputs = torch_model(inputs) | |
""" | |
def __init__(self, predict_net, init_net): | |
super().__init__() | |
self.eval() # always in eval mode | |
self._predict_net = predict_net | |
self._init_net = init_net | |
self._predictor = None | |
__init__.__HIDE_SPHINX_DOC__ = True | |
def predict_net(self): | |
""" | |
caffe2.core.Net: the underlying caffe2 predict net | |
""" | |
return self._predict_net | |
def init_net(self): | |
""" | |
caffe2.core.Net: the underlying caffe2 init net | |
""" | |
return self._init_net | |
def save_protobuf(self, output_dir): | |
""" | |
Save the model as caffe2's protobuf format. | |
It saves the following files: | |
* "model.pb": definition of the graph. Can be visualized with | |
tools like `netron <https://github.com/lutzroeder/netron>`_. | |
* "model_init.pb": model parameters | |
* "model.pbtxt": human-readable definition of the graph. Not | |
needed for deployment. | |
Args: | |
output_dir (str): the output directory to save protobuf files. | |
""" | |
logger = logging.getLogger(__name__) | |
logger.info("Saving model to {} ...".format(output_dir)) | |
if not PathManager.exists(output_dir): | |
PathManager.mkdirs(output_dir) | |
with PathManager.open(os.path.join(output_dir, "model.pb"), "wb") as f: | |
f.write(self._predict_net.SerializeToString()) | |
with PathManager.open(os.path.join(output_dir, "model.pbtxt"), "w") as f: | |
f.write(str(self._predict_net)) | |
with PathManager.open(os.path.join(output_dir, "model_init.pb"), "wb") as f: | |
f.write(self._init_net.SerializeToString()) | |
def save_graph(self, output_file, inputs=None): | |
""" | |
Save the graph as SVG format. | |
Args: | |
output_file (str): a SVG file | |
inputs: optional inputs given to the model. | |
If given, the inputs will be used to run the graph to record | |
shape of every tensor. The shape information will be | |
saved together with the graph. | |
""" | |
from .caffe2_export import run_and_save_graph | |
if inputs is None: | |
save_graph(self._predict_net, output_file, op_only=False) | |
else: | |
size_divisibility = get_pb_arg_vali(self._predict_net, "size_divisibility", 0) | |
device = get_pb_arg_vals(self._predict_net, "device", b"cpu").decode("ascii") | |
inputs = convert_batched_inputs_to_c2_format(inputs, size_divisibility, device) | |
inputs = [x.cpu().numpy() for x in inputs] | |
run_and_save_graph(self._predict_net, self._init_net, inputs, output_file) | |
def load_protobuf(dir): | |
""" | |
Args: | |
dir (str): a directory used to save Caffe2Model with | |
:meth:`save_protobuf`. | |
The files "model.pb" and "model_init.pb" are needed. | |
Returns: | |
Caffe2Model: the caffe2 model loaded from this directory. | |
""" | |
predict_net = caffe2_pb2.NetDef() | |
with PathManager.open(os.path.join(dir, "model.pb"), "rb") as f: | |
predict_net.ParseFromString(f.read()) | |
init_net = caffe2_pb2.NetDef() | |
with PathManager.open(os.path.join(dir, "model_init.pb"), "rb") as f: | |
init_net.ParseFromString(f.read()) | |
return Caffe2Model(predict_net, init_net) | |
def __call__(self, inputs): | |
""" | |
An interface that wraps around a Caffe2 model and mimics detectron2's models' | |
input/output format. See details about the format at :doc:`/tutorials/models`. | |
This is used to compare the outputs of caffe2 model with its original torch model. | |
Due to the extra conversion between Pytorch/Caffe2, this method is not meant for | |
benchmark. Because of the conversion, this method also has dependency | |
on detectron2 in order to convert to detectron2's output format. | |
""" | |
if self._predictor is None: | |
self._predictor = ProtobufDetectionModel(self._predict_net, self._init_net) | |
return self._predictor(inputs) | |