Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
from typing import Any, List | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import CfgNode | |
from detectron2.structures import Instances | |
from densepose.data.meshes.catalog import MeshCatalog | |
from densepose.modeling.cse.utils import normalize_embeddings, squared_euclidean_distance_matrix | |
from .embed_utils import PackedCseAnnotations | |
from .mask import extract_data_for_mask_loss_from_matches | |
def _create_pixel_dist_matrix(grid_size: int) -> torch.Tensor: | |
rows = torch.arange(grid_size) | |
cols = torch.arange(grid_size) | |
# at index `i` contains [row, col], where | |
# row = i // grid_size | |
# col = i % grid_size | |
pix_coords = ( | |
torch.stack(torch.meshgrid(rows, cols), -1).reshape((grid_size * grid_size, 2)).float() | |
) | |
return squared_euclidean_distance_matrix(pix_coords, pix_coords) | |
def _sample_fg_pixels_randperm(fg_mask: torch.Tensor, sample_size: int) -> torch.Tensor: | |
fg_mask_flattened = fg_mask.reshape((-1,)) | |
num_pixels = int(fg_mask_flattened.sum().item()) | |
fg_pixel_indices = fg_mask_flattened.nonzero(as_tuple=True)[0] | |
if (sample_size <= 0) or (num_pixels <= sample_size): | |
return fg_pixel_indices | |
sample_indices = torch.randperm(num_pixels, device=fg_mask.device)[:sample_size] | |
return fg_pixel_indices[sample_indices] | |
def _sample_fg_pixels_multinomial(fg_mask: torch.Tensor, sample_size: int) -> torch.Tensor: | |
fg_mask_flattened = fg_mask.reshape((-1,)) | |
num_pixels = int(fg_mask_flattened.sum().item()) | |
if (sample_size <= 0) or (num_pixels <= sample_size): | |
return fg_mask_flattened.nonzero(as_tuple=True)[0] | |
return fg_mask_flattened.float().multinomial(sample_size, replacement=False) | |
class PixToShapeCycleLoss(nn.Module): | |
""" | |
Cycle loss for pixel-vertex correspondence | |
""" | |
def __init__(self, cfg: CfgNode): | |
super().__init__() | |
self.shape_names = list(cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDERS.keys()) | |
self.embed_size = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_SIZE | |
self.norm_p = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.NORM_P | |
self.use_all_meshes_not_gt_only = ( | |
cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.USE_ALL_MESHES_NOT_GT_ONLY | |
) | |
self.num_pixels_to_sample = ( | |
cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.NUM_PIXELS_TO_SAMPLE | |
) | |
self.pix_sigma = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.PIXEL_SIGMA | |
self.temperature_pix_to_vertex = ( | |
cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.TEMPERATURE_PIXEL_TO_VERTEX | |
) | |
self.temperature_vertex_to_pix = ( | |
cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.TEMPERATURE_VERTEX_TO_PIXEL | |
) | |
self.pixel_dists = _create_pixel_dist_matrix(cfg.MODEL.ROI_DENSEPOSE_HEAD.HEATMAP_SIZE) | |
def forward( | |
self, | |
proposals_with_gt: List[Instances], | |
densepose_predictor_outputs: Any, | |
packed_annotations: PackedCseAnnotations, | |
embedder: nn.Module, | |
): | |
""" | |
Args: | |
proposals_with_gt (list of Instances): detections with associated | |
ground truth data; each item corresponds to instances detected | |
on 1 image; the number of items corresponds to the number of | |
images in a batch | |
densepose_predictor_outputs: an object of a dataclass that contains predictor | |
outputs with estimated values; assumed to have the following attributes: | |
* embedding - embedding estimates, tensor of shape [N, D, S, S], where | |
N = number of instances (= sum N_i, where N_i is the number of | |
instances on image i) | |
D = embedding space dimensionality (MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_SIZE) | |
S = output size (width and height) | |
packed_annotations (PackedCseAnnotations): contains various data useful | |
for loss computation, each data is packed into a single tensor | |
embedder (nn.Module): module that computes vertex embeddings for different meshes | |
""" | |
pix_embeds = densepose_predictor_outputs.embedding | |
if self.pixel_dists.device != pix_embeds.device: | |
# should normally be done only once | |
self.pixel_dists = self.pixel_dists.to(device=pix_embeds.device) | |
with torch.no_grad(): | |
mask_loss_data = extract_data_for_mask_loss_from_matches( | |
proposals_with_gt, densepose_predictor_outputs.coarse_segm | |
) | |
# GT masks - tensor of shape [N, S, S] of int64 | |
masks_gt = mask_loss_data.masks_gt.long() # pyre-ignore[16] | |
assert len(pix_embeds) == len(masks_gt), ( | |
f"Number of instances with embeddings {len(pix_embeds)} != " | |
f"number of instances with GT masks {len(masks_gt)}" | |
) | |
losses = [] | |
mesh_names = ( | |
self.shape_names | |
if self.use_all_meshes_not_gt_only | |
else [ | |
MeshCatalog.get_mesh_name(mesh_id.item()) | |
for mesh_id in packed_annotations.vertex_mesh_ids_gt.unique() | |
] | |
) | |
for pixel_embeddings, mask_gt in zip(pix_embeds, masks_gt): | |
# pixel_embeddings [D, S, S] | |
# mask_gt [S, S] | |
for mesh_name in mesh_names: | |
mesh_vertex_embeddings = embedder(mesh_name) | |
# pixel indices [M] | |
pixel_indices_flattened = _sample_fg_pixels_randperm( | |
mask_gt, self.num_pixels_to_sample | |
) | |
# pixel distances [M, M] | |
pixel_dists = self.pixel_dists.to(pixel_embeddings.device)[ | |
torch.meshgrid(pixel_indices_flattened, pixel_indices_flattened) | |
] | |
# pixel embeddings [M, D] | |
pixel_embeddings_sampled = normalize_embeddings( | |
pixel_embeddings.reshape((self.embed_size, -1))[:, pixel_indices_flattened].T | |
) | |
# pixel-vertex similarity [M, K] | |
sim_matrix = pixel_embeddings_sampled.mm(mesh_vertex_embeddings.T) | |
c_pix_vertex = F.softmax(sim_matrix / self.temperature_pix_to_vertex, dim=1) | |
c_vertex_pix = F.softmax(sim_matrix.T / self.temperature_vertex_to_pix, dim=1) | |
c_cycle = c_pix_vertex.mm(c_vertex_pix) | |
loss_cycle = torch.norm(pixel_dists * c_cycle, p=self.norm_p) | |
losses.append(loss_cycle) | |
if len(losses) == 0: | |
return pix_embeds.sum() * 0 | |
return torch.stack(losses, dim=0).mean() | |
def fake_value(self, densepose_predictor_outputs: Any, embedder: nn.Module): | |
losses = [embedder(mesh_name).sum() * 0 for mesh_name in embedder.mesh_names] | |
losses.append(densepose_predictor_outputs.embedding.sum() * 0) | |
return torch.mean(torch.stack(losses)) | |