Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
from abc import ABC, abstractmethod | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple | |
import torch | |
from torch.nn import functional as F | |
from detectron2.structures import BoxMode, Instances | |
from densepose import DensePoseDataRelative | |
LossDict = Dict[str, torch.Tensor] | |
def _linear_interpolation_utilities(v_norm, v0_src, size_src, v0_dst, size_dst, size_z): | |
""" | |
Computes utility values for linear interpolation at points v. | |
The points are given as normalized offsets in the source interval | |
(v0_src, v0_src + size_src), more precisely: | |
v = v0_src + v_norm * size_src / 256.0 | |
The computed utilities include lower points v_lo, upper points v_hi, | |
interpolation weights v_w and flags j_valid indicating whether the | |
points falls into the destination interval (v0_dst, v0_dst + size_dst). | |
Args: | |
v_norm (:obj: `torch.Tensor`): tensor of size N containing | |
normalized point offsets | |
v0_src (:obj: `torch.Tensor`): tensor of size N containing | |
left bounds of source intervals for normalized points | |
size_src (:obj: `torch.Tensor`): tensor of size N containing | |
source interval sizes for normalized points | |
v0_dst (:obj: `torch.Tensor`): tensor of size N containing | |
left bounds of destination intervals | |
size_dst (:obj: `torch.Tensor`): tensor of size N containing | |
destination interval sizes | |
size_z (int): interval size for data to be interpolated | |
Returns: | |
v_lo (:obj: `torch.Tensor`): int tensor of size N containing | |
indices of lower values used for interpolation, all values are | |
integers from [0, size_z - 1] | |
v_hi (:obj: `torch.Tensor`): int tensor of size N containing | |
indices of upper values used for interpolation, all values are | |
integers from [0, size_z - 1] | |
v_w (:obj: `torch.Tensor`): float tensor of size N containing | |
interpolation weights | |
j_valid (:obj: `torch.Tensor`): uint8 tensor of size N containing | |
0 for points outside the estimation interval | |
(v0_est, v0_est + size_est) and 1 otherwise | |
""" | |
v = v0_src + v_norm * size_src / 256.0 | |
j_valid = (v - v0_dst >= 0) * (v - v0_dst < size_dst) | |
v_grid = (v - v0_dst) * size_z / size_dst | |
v_lo = v_grid.floor().long().clamp(min=0, max=size_z - 1) | |
v_hi = (v_lo + 1).clamp(max=size_z - 1) | |
v_grid = torch.min(v_hi.float(), v_grid) | |
v_w = v_grid - v_lo.float() | |
return v_lo, v_hi, v_w, j_valid | |
class BilinearInterpolationHelper: | |
""" | |
Args: | |
packed_annotations: object that contains packed annotations | |
j_valid (:obj: `torch.Tensor`): uint8 tensor of size M containing | |
0 for points to be discarded and 1 for points to be selected | |
y_lo (:obj: `torch.Tensor`): int tensor of indices of upper values | |
in z_est for each point | |
y_hi (:obj: `torch.Tensor`): int tensor of indices of lower values | |
in z_est for each point | |
x_lo (:obj: `torch.Tensor`): int tensor of indices of left values | |
in z_est for each point | |
x_hi (:obj: `torch.Tensor`): int tensor of indices of right values | |
in z_est for each point | |
w_ylo_xlo (:obj: `torch.Tensor`): float tensor of size M; | |
contains upper-left value weight for each point | |
w_ylo_xhi (:obj: `torch.Tensor`): float tensor of size M; | |
contains upper-right value weight for each point | |
w_yhi_xlo (:obj: `torch.Tensor`): float tensor of size M; | |
contains lower-left value weight for each point | |
w_yhi_xhi (:obj: `torch.Tensor`): float tensor of size M; | |
contains lower-right value weight for each point | |
""" | |
def __init__( | |
self, | |
packed_annotations: Any, | |
j_valid: torch.Tensor, | |
y_lo: torch.Tensor, | |
y_hi: torch.Tensor, | |
x_lo: torch.Tensor, | |
x_hi: torch.Tensor, | |
w_ylo_xlo: torch.Tensor, | |
w_ylo_xhi: torch.Tensor, | |
w_yhi_xlo: torch.Tensor, | |
w_yhi_xhi: torch.Tensor, | |
): | |
for k, v in locals().items(): | |
if k != "self": | |
setattr(self, k, v) | |
def from_matches( | |
packed_annotations: Any, densepose_outputs_size_hw: Tuple[int, int] | |
) -> "BilinearInterpolationHelper": | |
""" | |
Args: | |
packed_annotations: annotations packed into tensors, the following | |
attributes are required: | |
- bbox_xywh_gt | |
- bbox_xywh_est | |
- x_gt | |
- y_gt | |
- point_bbox_with_dp_indices | |
- point_bbox_indices | |
densepose_outputs_size_hw (tuple [int, int]): resolution of | |
DensePose predictor outputs (H, W) | |
Return: | |
An instance of `BilinearInterpolationHelper` used to perform | |
interpolation for the given annotation points and output resolution | |
""" | |
zh, zw = densepose_outputs_size_hw | |
x0_gt, y0_gt, w_gt, h_gt = packed_annotations.bbox_xywh_gt[ | |
packed_annotations.point_bbox_with_dp_indices | |
].unbind(dim=1) | |
x0_est, y0_est, w_est, h_est = packed_annotations.bbox_xywh_est[ | |
packed_annotations.point_bbox_with_dp_indices | |
].unbind(dim=1) | |
x_lo, x_hi, x_w, jx_valid = _linear_interpolation_utilities( | |
packed_annotations.x_gt, x0_gt, w_gt, x0_est, w_est, zw | |
) | |
y_lo, y_hi, y_w, jy_valid = _linear_interpolation_utilities( | |
packed_annotations.y_gt, y0_gt, h_gt, y0_est, h_est, zh | |
) | |
j_valid = jx_valid * jy_valid | |
w_ylo_xlo = (1.0 - x_w) * (1.0 - y_w) | |
w_ylo_xhi = x_w * (1.0 - y_w) | |
w_yhi_xlo = (1.0 - x_w) * y_w | |
w_yhi_xhi = x_w * y_w | |
return BilinearInterpolationHelper( | |
packed_annotations, | |
j_valid, | |
y_lo, | |
y_hi, | |
x_lo, | |
x_hi, | |
w_ylo_xlo, # pyre-ignore[6] | |
w_ylo_xhi, | |
# pyre-fixme[6]: Expected `Tensor` for 9th param but got `float`. | |
w_yhi_xlo, | |
w_yhi_xhi, | |
) | |
def extract_at_points( | |
self, | |
z_est, | |
slice_fine_segm=None, | |
w_ylo_xlo=None, | |
w_ylo_xhi=None, | |
w_yhi_xlo=None, | |
w_yhi_xhi=None, | |
): | |
""" | |
Extract ground truth values z_gt for valid point indices and estimated | |
values z_est using bilinear interpolation over top-left (y_lo, x_lo), | |
top-right (y_lo, x_hi), bottom-left (y_hi, x_lo) and bottom-right | |
(y_hi, x_hi) values in z_est with corresponding weights: | |
w_ylo_xlo, w_ylo_xhi, w_yhi_xlo and w_yhi_xhi. | |
Use slice_fine_segm to slice dim=1 in z_est | |
""" | |
slice_fine_segm = ( | |
self.packed_annotations.fine_segm_labels_gt | |
if slice_fine_segm is None | |
else slice_fine_segm | |
) | |
w_ylo_xlo = self.w_ylo_xlo if w_ylo_xlo is None else w_ylo_xlo | |
w_ylo_xhi = self.w_ylo_xhi if w_ylo_xhi is None else w_ylo_xhi | |
w_yhi_xlo = self.w_yhi_xlo if w_yhi_xlo is None else w_yhi_xlo | |
w_yhi_xhi = self.w_yhi_xhi if w_yhi_xhi is None else w_yhi_xhi | |
index_bbox = self.packed_annotations.point_bbox_indices | |
z_est_sampled = ( | |
z_est[index_bbox, slice_fine_segm, self.y_lo, self.x_lo] * w_ylo_xlo | |
+ z_est[index_bbox, slice_fine_segm, self.y_lo, self.x_hi] * w_ylo_xhi | |
+ z_est[index_bbox, slice_fine_segm, self.y_hi, self.x_lo] * w_yhi_xlo | |
+ z_est[index_bbox, slice_fine_segm, self.y_hi, self.x_hi] * w_yhi_xhi | |
) | |
return z_est_sampled | |
def resample_data( | |
z, bbox_xywh_src, bbox_xywh_dst, wout, hout, mode: str = "nearest", padding_mode: str = "zeros" | |
): | |
""" | |
Args: | |
z (:obj: `torch.Tensor`): tensor of size (N,C,H,W) with data to be | |
resampled | |
bbox_xywh_src (:obj: `torch.Tensor`): tensor of size (N,4) containing | |
source bounding boxes in format XYWH | |
bbox_xywh_dst (:obj: `torch.Tensor`): tensor of size (N,4) containing | |
destination bounding boxes in format XYWH | |
Return: | |
zresampled (:obj: `torch.Tensor`): tensor of size (N, C, Hout, Wout) | |
with resampled values of z, where D is the discretization size | |
""" | |
n = bbox_xywh_src.size(0) | |
assert n == bbox_xywh_dst.size(0), ( | |
"The number of " | |
"source ROIs for resampling ({}) should be equal to the number " | |
"of destination ROIs ({})".format(bbox_xywh_src.size(0), bbox_xywh_dst.size(0)) | |
) | |
x0src, y0src, wsrc, hsrc = bbox_xywh_src.unbind(dim=1) | |
x0dst, y0dst, wdst, hdst = bbox_xywh_dst.unbind(dim=1) | |
x0dst_norm = 2 * (x0dst - x0src) / wsrc - 1 | |
y0dst_norm = 2 * (y0dst - y0src) / hsrc - 1 | |
x1dst_norm = 2 * (x0dst + wdst - x0src) / wsrc - 1 | |
y1dst_norm = 2 * (y0dst + hdst - y0src) / hsrc - 1 | |
grid_w = torch.arange(wout, device=z.device, dtype=torch.float) / wout | |
grid_h = torch.arange(hout, device=z.device, dtype=torch.float) / hout | |
grid_w_expanded = grid_w[None, None, :].expand(n, hout, wout) | |
grid_h_expanded = grid_h[None, :, None].expand(n, hout, wout) | |
dx_expanded = (x1dst_norm - x0dst_norm)[:, None, None].expand(n, hout, wout) | |
dy_expanded = (y1dst_norm - y0dst_norm)[:, None, None].expand(n, hout, wout) | |
x0_expanded = x0dst_norm[:, None, None].expand(n, hout, wout) | |
y0_expanded = y0dst_norm[:, None, None].expand(n, hout, wout) | |
grid_x = grid_w_expanded * dx_expanded + x0_expanded | |
grid_y = grid_h_expanded * dy_expanded + y0_expanded | |
grid = torch.stack((grid_x, grid_y), dim=3) | |
# resample Z from (N, C, H, W) into (N, C, Hout, Wout) | |
zresampled = F.grid_sample(z, grid, mode=mode, padding_mode=padding_mode, align_corners=True) | |
return zresampled | |
class AnnotationsAccumulator(ABC): | |
""" | |
Abstract class for an accumulator for annotations that can produce | |
dense annotations packed into tensors. | |
""" | |
def accumulate(self, instances_one_image: Instances): | |
""" | |
Accumulate instances data for one image | |
Args: | |
instances_one_image (Instances): instances data to accumulate | |
""" | |
pass | |
def pack(self) -> Any: | |
""" | |
Pack data into tensors | |
""" | |
pass | |
class PackedChartBasedAnnotations: | |
""" | |
Packed annotations for chart-based model training. The following attributes | |
are defined: | |
- fine_segm_labels_gt (tensor [K] of `int64`): GT fine segmentation point labels | |
- x_gt (tensor [K] of `float32`): GT normalized X point coordinates | |
- y_gt (tensor [K] of `float32`): GT normalized Y point coordinates | |
- u_gt (tensor [K] of `float32`): GT point U values | |
- v_gt (tensor [K] of `float32`): GT point V values | |
- coarse_segm_gt (tensor [N, S, S] of `float32`): GT segmentation for bounding boxes | |
- bbox_xywh_gt (tensor [N, 4] of `float32`): selected GT bounding boxes in | |
XYWH format | |
- bbox_xywh_est (tensor [N, 4] of `float32`): selected matching estimated | |
bounding boxes in XYWH format | |
- point_bbox_with_dp_indices (tensor [K] of `int64`): indices of bounding boxes | |
with DensePose annotations that correspond to the point data | |
- point_bbox_indices (tensor [K] of `int64`): indices of bounding boxes | |
(not necessarily the selected ones with DensePose data) that correspond | |
to the point data | |
- bbox_indices (tensor [N] of `int64`): global indices of selected bounding | |
boxes with DensePose annotations; these indices could be used to access | |
features that are computed for all bounding boxes, not only the ones with | |
DensePose annotations. | |
Here K is the total number of points and N is the total number of instances | |
with DensePose annotations. | |
""" | |
fine_segm_labels_gt: torch.Tensor | |
x_gt: torch.Tensor | |
y_gt: torch.Tensor | |
u_gt: torch.Tensor | |
v_gt: torch.Tensor | |
coarse_segm_gt: Optional[torch.Tensor] | |
bbox_xywh_gt: torch.Tensor | |
bbox_xywh_est: torch.Tensor | |
point_bbox_with_dp_indices: torch.Tensor | |
point_bbox_indices: torch.Tensor | |
bbox_indices: torch.Tensor | |
class ChartBasedAnnotationsAccumulator(AnnotationsAccumulator): | |
""" | |
Accumulates annotations by batches that correspond to objects detected on | |
individual images. Can pack them together into single tensors. | |
""" | |
def __init__(self): | |
self.i_gt = [] | |
self.x_gt = [] | |
self.y_gt = [] | |
self.u_gt = [] | |
self.v_gt = [] | |
self.s_gt = [] | |
self.bbox_xywh_gt = [] | |
self.bbox_xywh_est = [] | |
self.point_bbox_with_dp_indices = [] | |
self.point_bbox_indices = [] | |
self.bbox_indices = [] | |
self.nxt_bbox_with_dp_index = 0 | |
self.nxt_bbox_index = 0 | |
def accumulate(self, instances_one_image: Instances): | |
""" | |
Accumulate instances data for one image | |
Args: | |
instances_one_image (Instances): instances data to accumulate | |
""" | |
boxes_xywh_est = BoxMode.convert( | |
instances_one_image.proposal_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS | |
) | |
boxes_xywh_gt = BoxMode.convert( | |
instances_one_image.gt_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS | |
) | |
n_matches = len(boxes_xywh_gt) | |
assert n_matches == len( | |
boxes_xywh_est | |
), f"Got {len(boxes_xywh_est)} proposal boxes and {len(boxes_xywh_gt)} GT boxes" | |
if not n_matches: | |
# no detection - GT matches | |
return | |
if ( | |
not hasattr(instances_one_image, "gt_densepose") | |
or instances_one_image.gt_densepose is None | |
): | |
# no densepose GT for the detections, just increase the bbox index | |
self.nxt_bbox_index += n_matches | |
return | |
for box_xywh_est, box_xywh_gt, dp_gt in zip( | |
boxes_xywh_est, boxes_xywh_gt, instances_one_image.gt_densepose | |
): | |
if (dp_gt is not None) and (len(dp_gt.x) > 0): | |
# pyre-fixme[6]: For 1st argument expected `Tensor` but got `float`. | |
# pyre-fixme[6]: For 2nd argument expected `Tensor` but got `float`. | |
self._do_accumulate(box_xywh_gt, box_xywh_est, dp_gt) | |
self.nxt_bbox_index += 1 | |
def _do_accumulate( | |
self, box_xywh_gt: torch.Tensor, box_xywh_est: torch.Tensor, dp_gt: DensePoseDataRelative | |
): | |
""" | |
Accumulate instances data for one image, given that the data is not empty | |
Args: | |
box_xywh_gt (tensor): GT bounding box | |
box_xywh_est (tensor): estimated bounding box | |
dp_gt (DensePoseDataRelative): GT densepose data | |
""" | |
self.i_gt.append(dp_gt.i) | |
self.x_gt.append(dp_gt.x) | |
self.y_gt.append(dp_gt.y) | |
self.u_gt.append(dp_gt.u) | |
self.v_gt.append(dp_gt.v) | |
if hasattr(dp_gt, "segm"): | |
self.s_gt.append(dp_gt.segm.unsqueeze(0)) | |
self.bbox_xywh_gt.append(box_xywh_gt.view(-1, 4)) | |
self.bbox_xywh_est.append(box_xywh_est.view(-1, 4)) | |
self.point_bbox_with_dp_indices.append( | |
torch.full_like(dp_gt.i, self.nxt_bbox_with_dp_index) | |
) | |
self.point_bbox_indices.append(torch.full_like(dp_gt.i, self.nxt_bbox_index)) | |
self.bbox_indices.append(self.nxt_bbox_index) | |
self.nxt_bbox_with_dp_index += 1 | |
def pack(self) -> Optional[PackedChartBasedAnnotations]: | |
""" | |
Pack data into tensors | |
""" | |
if not len(self.i_gt): | |
# TODO: | |
# returning proper empty annotations would require | |
# creating empty tensors of appropriate shape and | |
# type on an appropriate device; | |
# we return None so far to indicate empty annotations | |
return None | |
return PackedChartBasedAnnotations( | |
fine_segm_labels_gt=torch.cat(self.i_gt, 0).long(), | |
x_gt=torch.cat(self.x_gt, 0), | |
y_gt=torch.cat(self.y_gt, 0), | |
u_gt=torch.cat(self.u_gt, 0), | |
v_gt=torch.cat(self.v_gt, 0), | |
# ignore segmentation annotations, if not all the instances contain those | |
coarse_segm_gt=torch.cat(self.s_gt, 0) | |
if len(self.s_gt) == len(self.bbox_xywh_gt) | |
else None, | |
bbox_xywh_gt=torch.cat(self.bbox_xywh_gt, 0), | |
bbox_xywh_est=torch.cat(self.bbox_xywh_est, 0), | |
point_bbox_with_dp_indices=torch.cat(self.point_bbox_with_dp_indices, 0).long(), | |
point_bbox_indices=torch.cat(self.point_bbox_indices, 0).long(), | |
bbox_indices=torch.as_tensor( | |
self.bbox_indices, dtype=torch.long, device=self.x_gt[0].device | |
).long(), | |
) | |
def extract_packed_annotations_from_matches( | |
proposals_with_targets: List[Instances], accumulator: AnnotationsAccumulator | |
) -> Any: | |
for proposals_targets_per_image in proposals_with_targets: | |
accumulator.accumulate(proposals_targets_per_image) | |
return accumulator.pack() | |
def sample_random_indices( | |
n_indices: int, n_samples: int, device: Optional[torch.device] = None | |
) -> Optional[torch.Tensor]: | |
""" | |
Samples `n_samples` random indices from range `[0..n_indices - 1]`. | |
If `n_indices` is smaller than `n_samples`, returns `None` meaning that all indices | |
are selected. | |
Args: | |
n_indices (int): total number of indices | |
n_samples (int): number of indices to sample | |
device (torch.device): the desired device of returned tensor | |
Return: | |
Tensor of selected vertex indices, or `None`, if all vertices are selected | |
""" | |
if (n_samples <= 0) or (n_indices <= n_samples): | |
return None | |
indices = torch.randperm(n_indices, device=device)[:n_samples] | |
return indices | |