Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
from typing import List | |
import fvcore.nn.weight_init as weight_init | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import configurable | |
from detectron2.layers import Conv2d, ConvTranspose2d, ShapeSpec, cat, get_norm | |
from detectron2.layers.wrappers import move_device_like | |
from detectron2.structures import Instances | |
from detectron2.utils.events import get_event_storage | |
from detectron2.utils.registry import Registry | |
__all__ = [ | |
"BaseMaskRCNNHead", | |
"MaskRCNNConvUpsampleHead", | |
"build_mask_head", | |
"ROI_MASK_HEAD_REGISTRY", | |
] | |
ROI_MASK_HEAD_REGISTRY = Registry("ROI_MASK_HEAD") | |
ROI_MASK_HEAD_REGISTRY.__doc__ = """ | |
Registry for mask heads, which predicts instance masks given | |
per-region features. | |
The registered object will be called with `obj(cfg, input_shape)`. | |
""" | |
def mask_rcnn_loss(pred_mask_logits: torch.Tensor, instances: List[Instances], vis_period: int = 0): | |
""" | |
Compute the mask prediction loss defined in the Mask R-CNN paper. | |
Args: | |
pred_mask_logits (Tensor): A tensor of shape (B, C, Hmask, Wmask) or (B, 1, Hmask, Wmask) | |
for class-specific or class-agnostic, where B is the total number of predicted masks | |
in all images, C is the number of foreground classes, and Hmask, Wmask are the height | |
and width of the mask predictions. The values are logits. | |
instances (list[Instances]): A list of N Instances, where N is the number of images | |
in the batch. These instances are in 1:1 | |
correspondence with the pred_mask_logits. The ground-truth labels (class, box, mask, | |
...) associated with each instance are stored in fields. | |
vis_period (int): the period (in steps) to dump visualization. | |
Returns: | |
mask_loss (Tensor): A scalar tensor containing the loss. | |
""" | |
cls_agnostic_mask = pred_mask_logits.size(1) == 1 | |
total_num_masks = pred_mask_logits.size(0) | |
mask_side_len = pred_mask_logits.size(2) | |
assert pred_mask_logits.size(2) == pred_mask_logits.size(3), "Mask prediction must be square!" | |
gt_classes = [] | |
gt_masks = [] | |
for instances_per_image in instances: | |
if len(instances_per_image) == 0: | |
continue | |
if not cls_agnostic_mask: | |
gt_classes_per_image = instances_per_image.gt_classes.to(dtype=torch.int64) | |
gt_classes.append(gt_classes_per_image) | |
gt_masks_per_image = instances_per_image.gt_masks.crop_and_resize( | |
instances_per_image.proposal_boxes.tensor, mask_side_len | |
).to(device=pred_mask_logits.device) | |
# A tensor of shape (N, M, M), N=#instances in the image; M=mask_side_len | |
gt_masks.append(gt_masks_per_image) | |
if len(gt_masks) == 0: | |
return pred_mask_logits.sum() * 0 | |
gt_masks = cat(gt_masks, dim=0) | |
if cls_agnostic_mask: | |
pred_mask_logits = pred_mask_logits[:, 0] | |
else: | |
indices = torch.arange(total_num_masks) | |
gt_classes = cat(gt_classes, dim=0) | |
pred_mask_logits = pred_mask_logits[indices, gt_classes] | |
if gt_masks.dtype == torch.bool: | |
gt_masks_bool = gt_masks | |
else: | |
# Here we allow gt_masks to be float as well (depend on the implementation of rasterize()) | |
gt_masks_bool = gt_masks > 0.5 | |
gt_masks = gt_masks.to(dtype=torch.float32) | |
# Log the training accuracy (using gt classes and sigmoid(0.0) == 0.5 threshold) | |
mask_incorrect = (pred_mask_logits > 0.0) != gt_masks_bool | |
mask_accuracy = 1 - (mask_incorrect.sum().item() / max(mask_incorrect.numel(), 1.0)) | |
num_positive = gt_masks_bool.sum().item() | |
false_positive = (mask_incorrect & ~gt_masks_bool).sum().item() / max( | |
gt_masks_bool.numel() - num_positive, 1.0 | |
) | |
false_negative = (mask_incorrect & gt_masks_bool).sum().item() / max(num_positive, 1.0) | |
storage = get_event_storage() | |
storage.put_scalar("mask_rcnn/accuracy", mask_accuracy) | |
storage.put_scalar("mask_rcnn/false_positive", false_positive) | |
storage.put_scalar("mask_rcnn/false_negative", false_negative) | |
if vis_period > 0 and storage.iter % vis_period == 0: | |
pred_masks = pred_mask_logits.sigmoid() | |
vis_masks = torch.cat([pred_masks, gt_masks], axis=2) | |
name = "Left: mask prediction; Right: mask GT" | |
for idx, vis_mask in enumerate(vis_masks): | |
vis_mask = torch.stack([vis_mask] * 3, axis=0) | |
storage.put_image(name + f" ({idx})", vis_mask) | |
mask_loss = F.binary_cross_entropy_with_logits(pred_mask_logits, gt_masks, reduction="mean") | |
return mask_loss | |
def mask_rcnn_inference(pred_mask_logits: torch.Tensor, pred_instances: List[Instances]): | |
""" | |
Convert pred_mask_logits to estimated foreground probability masks while also | |
extracting only the masks for the predicted classes in pred_instances. For each | |
predicted box, the mask of the same class is attached to the instance by adding a | |
new "pred_masks" field to pred_instances. | |
Args: | |
pred_mask_logits (Tensor): A tensor of shape (B, C, Hmask, Wmask) or (B, 1, Hmask, Wmask) | |
for class-specific or class-agnostic, where B is the total number of predicted masks | |
in all images, C is the number of foreground classes, and Hmask, Wmask are the height | |
and width of the mask predictions. The values are logits. | |
pred_instances (list[Instances]): A list of N Instances, where N is the number of images | |
in the batch. Each Instances must have field "pred_classes". | |
Returns: | |
None. pred_instances will contain an extra "pred_masks" field storing a mask of size (Hmask, | |
Wmask) for predicted class. Note that the masks are returned as a soft (non-quantized) | |
masks the resolution predicted by the network; post-processing steps, such as resizing | |
the predicted masks to the original image resolution and/or binarizing them, is left | |
to the caller. | |
""" | |
cls_agnostic_mask = pred_mask_logits.size(1) == 1 | |
if cls_agnostic_mask: | |
mask_probs_pred = pred_mask_logits.sigmoid() | |
else: | |
# Select masks corresponding to the predicted classes | |
num_masks = pred_mask_logits.shape[0] | |
class_pred = cat([i.pred_classes for i in pred_instances]) | |
device = ( | |
class_pred.device | |
if torch.jit.is_scripting() | |
else ("cpu" if torch.jit.is_tracing() else class_pred.device) | |
) | |
indices = move_device_like(torch.arange(num_masks, device=device), class_pred) | |
mask_probs_pred = pred_mask_logits[indices, class_pred][:, None].sigmoid() | |
# mask_probs_pred.shape: (B, 1, Hmask, Wmask) | |
num_boxes_per_image = [len(i) for i in pred_instances] | |
mask_probs_pred = mask_probs_pred.split(num_boxes_per_image, dim=0) | |
for prob, instances in zip(mask_probs_pred, pred_instances): | |
instances.pred_masks = prob # (1, Hmask, Wmask) | |
class BaseMaskRCNNHead(nn.Module): | |
""" | |
Implement the basic Mask R-CNN losses and inference logic described in :paper:`Mask R-CNN` | |
""" | |
def __init__(self, *, loss_weight: float = 1.0, vis_period: int = 0): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
loss_weight (float): multiplier of the loss | |
vis_period (int): visualization period | |
""" | |
super().__init__() | |
self.vis_period = vis_period | |
self.loss_weight = loss_weight | |
def from_config(cls, cfg, input_shape): | |
return {"vis_period": cfg.VIS_PERIOD} | |
def forward(self, x, instances: List[Instances]): | |
""" | |
Args: | |
x: input region feature(s) provided by :class:`ROIHeads`. | |
instances (list[Instances]): contains the boxes & labels corresponding | |
to the input features. | |
Exact format is up to its caller to decide. | |
Typically, this is the foreground instances in training, with | |
"proposal_boxes" field and other gt annotations. | |
In inference, it contains boxes that are already predicted. | |
Returns: | |
A dict of losses in training. The predicted "instances" in inference. | |
""" | |
x = self.layers(x) | |
if self.training: | |
return {"loss_mask": mask_rcnn_loss(x, instances, self.vis_period) * self.loss_weight} | |
else: | |
mask_rcnn_inference(x, instances) | |
return instances | |
def layers(self, x): | |
""" | |
Neural network layers that makes predictions from input features. | |
""" | |
raise NotImplementedError | |
# To get torchscript support, we make the head a subclass of `nn.Sequential`. | |
# Therefore, to add new layers in this head class, please make sure they are | |
# added in the order they will be used in forward(). | |
class MaskRCNNConvUpsampleHead(BaseMaskRCNNHead, nn.Sequential): | |
""" | |
A mask head with several conv layers, plus an upsample layer (with `ConvTranspose2d`). | |
Predictions are made with a final 1x1 conv layer. | |
""" | |
def __init__(self, input_shape: ShapeSpec, *, num_classes, conv_dims, conv_norm="", **kwargs): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
input_shape (ShapeSpec): shape of the input feature | |
num_classes (int): the number of foreground classes (i.e. background is not | |
included). 1 if using class agnostic prediction. | |
conv_dims (list[int]): a list of N>0 integers representing the output dimensions | |
of N-1 conv layers and the last upsample layer. | |
conv_norm (str or callable): normalization for the conv layers. | |
See :func:`detectron2.layers.get_norm` for supported types. | |
""" | |
super().__init__(**kwargs) | |
assert len(conv_dims) >= 1, "conv_dims have to be non-empty!" | |
self.conv_norm_relus = [] | |
cur_channels = input_shape.channels | |
for k, conv_dim in enumerate(conv_dims[:-1]): | |
conv = Conv2d( | |
cur_channels, | |
conv_dim, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=not conv_norm, | |
norm=get_norm(conv_norm, conv_dim), | |
activation=nn.ReLU(), | |
) | |
self.add_module("mask_fcn{}".format(k + 1), conv) | |
self.conv_norm_relus.append(conv) | |
cur_channels = conv_dim | |
self.deconv = ConvTranspose2d( | |
cur_channels, conv_dims[-1], kernel_size=2, stride=2, padding=0 | |
) | |
self.add_module("deconv_relu", nn.ReLU()) | |
cur_channels = conv_dims[-1] | |
self.predictor = Conv2d(cur_channels, num_classes, kernel_size=1, stride=1, padding=0) | |
for layer in self.conv_norm_relus + [self.deconv]: | |
weight_init.c2_msra_fill(layer) | |
# use normal distribution initialization for mask prediction layer | |
nn.init.normal_(self.predictor.weight, std=0.001) | |
if self.predictor.bias is not None: | |
nn.init.constant_(self.predictor.bias, 0) | |
def from_config(cls, cfg, input_shape): | |
ret = super().from_config(cfg, input_shape) | |
conv_dim = cfg.MODEL.ROI_MASK_HEAD.CONV_DIM | |
num_conv = cfg.MODEL.ROI_MASK_HEAD.NUM_CONV | |
ret.update( | |
conv_dims=[conv_dim] * (num_conv + 1), # +1 for ConvTranspose | |
conv_norm=cfg.MODEL.ROI_MASK_HEAD.NORM, | |
input_shape=input_shape, | |
) | |
if cfg.MODEL.ROI_MASK_HEAD.CLS_AGNOSTIC_MASK: | |
ret["num_classes"] = 1 | |
else: | |
ret["num_classes"] = cfg.MODEL.ROI_HEADS.NUM_CLASSES | |
return ret | |
def layers(self, x): | |
for layer in self: | |
x = layer(x) | |
return x | |
def build_mask_head(cfg, input_shape): | |
""" | |
Build a mask head defined by `cfg.MODEL.ROI_MASK_HEAD.NAME`. | |
""" | |
name = cfg.MODEL.ROI_MASK_HEAD.NAME | |
return ROI_MASK_HEAD_REGISTRY.get(name)(cfg, input_shape) | |