Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import copy | |
import itertools | |
import numpy as np | |
from typing import Any, Iterator, List, Union | |
import pycocotools.mask as mask_util | |
import torch | |
from torch import device | |
from detectron2.layers.roi_align import ROIAlign | |
from detectron2.utils.memory import retry_if_cuda_oom | |
from .boxes import Boxes | |
def polygon_area(x, y): | |
# Using the shoelace formula | |
# https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates | |
return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) | |
def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray: | |
""" | |
Args: | |
polygons (list[ndarray]): each array has shape (Nx2,) | |
height, width (int) | |
Returns: | |
ndarray: a bool mask of shape (height, width) | |
""" | |
if len(polygons) == 0: | |
# COCOAPI does not support empty polygons | |
return np.zeros((height, width)).astype(bool) | |
rles = mask_util.frPyObjects(polygons, height, width) | |
rle = mask_util.merge(rles) | |
return mask_util.decode(rle).astype(bool) | |
def rasterize_polygons_within_box( | |
polygons: List[np.ndarray], box: np.ndarray, mask_size: int | |
) -> torch.Tensor: | |
""" | |
Rasterize the polygons into a mask image and | |
crop the mask content in the given box. | |
The cropped mask is resized to (mask_size, mask_size). | |
This function is used when generating training targets for mask head in Mask R-CNN. | |
Given original ground-truth masks for an image, new ground-truth mask | |
training targets in the size of `mask_size x mask_size` | |
must be provided for each predicted box. This function will be called to | |
produce such targets. | |
Args: | |
polygons (list[ndarray[float]]): a list of polygons, which represents an instance. | |
box: 4-element numpy array | |
mask_size (int): | |
Returns: | |
Tensor: BoolTensor of shape (mask_size, mask_size) | |
""" | |
# 1. Shift the polygons w.r.t the boxes | |
w, h = box[2] - box[0], box[3] - box[1] | |
polygons = copy.deepcopy(polygons) | |
for p in polygons: | |
p[0::2] = p[0::2] - box[0] | |
p[1::2] = p[1::2] - box[1] | |
# 2. Rescale the polygons to the new box size | |
# max() to avoid division by small number | |
ratio_h = mask_size / max(h, 0.1) | |
ratio_w = mask_size / max(w, 0.1) | |
if ratio_h == ratio_w: | |
for p in polygons: | |
p *= ratio_h | |
else: | |
for p in polygons: | |
p[0::2] *= ratio_w | |
p[1::2] *= ratio_h | |
# 3. Rasterize the polygons with coco api | |
mask = polygons_to_bitmask(polygons, mask_size, mask_size) | |
mask = torch.from_numpy(mask) | |
return mask | |
class BitMasks: | |
""" | |
This class stores the segmentation masks for all objects in one image, in | |
the form of bitmaps. | |
Attributes: | |
tensor: bool Tensor of N,H,W, representing N instances in the image. | |
""" | |
def __init__(self, tensor: Union[torch.Tensor, np.ndarray]): | |
""" | |
Args: | |
tensor: bool Tensor of N,H,W, representing N instances in the image. | |
""" | |
if isinstance(tensor, torch.Tensor): | |
tensor = tensor.to(torch.bool) | |
else: | |
tensor = torch.as_tensor(tensor, dtype=torch.bool, device=torch.device("cpu")) | |
assert tensor.dim() == 3, tensor.size() | |
self.image_size = tensor.shape[1:] | |
self.tensor = tensor | |
def to(self, *args: Any, **kwargs: Any) -> "BitMasks": | |
return BitMasks(self.tensor.to(*args, **kwargs)) | |
def device(self) -> torch.device: | |
return self.tensor.device | |
def __getitem__(self, item: Union[int, slice, torch.BoolTensor]) -> "BitMasks": | |
""" | |
Returns: | |
BitMasks: Create a new :class:`BitMasks` by indexing. | |
The following usage are allowed: | |
1. `new_masks = masks[3]`: return a `BitMasks` which contains only one mask. | |
2. `new_masks = masks[2:10]`: return a slice of masks. | |
3. `new_masks = masks[vector]`, where vector is a torch.BoolTensor | |
with `length = len(masks)`. Nonzero elements in the vector will be selected. | |
Note that the returned object might share storage with this object, | |
subject to Pytorch's indexing semantics. | |
""" | |
if isinstance(item, int): | |
return BitMasks(self.tensor[item].unsqueeze(0)) | |
m = self.tensor[item] | |
assert m.dim() == 3, "Indexing on BitMasks with {} returns a tensor with shape {}!".format( | |
item, m.shape | |
) | |
return BitMasks(m) | |
def __iter__(self) -> torch.Tensor: | |
yield from self.tensor | |
def __repr__(self) -> str: | |
s = self.__class__.__name__ + "(" | |
s += "num_instances={})".format(len(self.tensor)) | |
return s | |
def __len__(self) -> int: | |
return self.tensor.shape[0] | |
def nonempty(self) -> torch.Tensor: | |
""" | |
Find masks that are non-empty. | |
Returns: | |
Tensor: a BoolTensor which represents | |
whether each mask is empty (False) or non-empty (True). | |
""" | |
return self.tensor.flatten(1).any(dim=1) | |
def from_polygon_masks( | |
polygon_masks: Union["PolygonMasks", List[List[np.ndarray]]], height: int, width: int | |
) -> "BitMasks": | |
""" | |
Args: | |
polygon_masks (list[list[ndarray]] or PolygonMasks) | |
height, width (int) | |
""" | |
if isinstance(polygon_masks, PolygonMasks): | |
polygon_masks = polygon_masks.polygons | |
masks = [polygons_to_bitmask(p, height, width) for p in polygon_masks] | |
if len(masks): | |
return BitMasks(torch.stack([torch.from_numpy(x) for x in masks])) | |
else: | |
return BitMasks(torch.empty(0, height, width, dtype=torch.bool)) | |
def from_roi_masks(roi_masks: "ROIMasks", height: int, width: int) -> "BitMasks": | |
""" | |
Args: | |
roi_masks: | |
height, width (int): | |
""" | |
return roi_masks.to_bitmasks(height, width) | |
def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: | |
""" | |
Crop each bitmask by the given box, and resize results to (mask_size, mask_size). | |
This can be used to prepare training targets for Mask R-CNN. | |
It has less reconstruction error compared to rasterization with polygons. | |
However we observe no difference in accuracy, | |
but BitMasks requires more memory to store all the masks. | |
Args: | |
boxes (Tensor): Nx4 tensor storing the boxes for each mask | |
mask_size (int): the size of the rasterized mask. | |
Returns: | |
Tensor: | |
A bool tensor of shape (N, mask_size, mask_size), where | |
N is the number of predicted boxes for this image. | |
""" | |
assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) | |
device = self.tensor.device | |
batch_inds = torch.arange(len(boxes), device=device).to(dtype=boxes.dtype)[:, None] | |
rois = torch.cat([batch_inds, boxes], dim=1) # Nx5 | |
bit_masks = self.tensor.to(dtype=torch.float32) | |
rois = rois.to(device=device) | |
output = ( | |
ROIAlign((mask_size, mask_size), 1.0, 0, aligned=True) | |
.forward(bit_masks[:, None, :, :], rois) | |
.squeeze(1) | |
) | |
output = output >= 0.5 | |
return output | |
def get_bounding_boxes(self) -> Boxes: | |
""" | |
Returns: | |
Boxes: tight bounding boxes around bitmasks. | |
If a mask is empty, it's bounding box will be all zero. | |
""" | |
boxes = torch.zeros(self.tensor.shape[0], 4, dtype=torch.float32) | |
x_any = torch.any(self.tensor, dim=1) | |
y_any = torch.any(self.tensor, dim=2) | |
for idx in range(self.tensor.shape[0]): | |
x = torch.where(x_any[idx, :])[0] | |
y = torch.where(y_any[idx, :])[0] | |
if len(x) > 0 and len(y) > 0: | |
boxes[idx, :] = torch.as_tensor( | |
[x[0], y[0], x[-1] + 1, y[-1] + 1], dtype=torch.float32 | |
) | |
return Boxes(boxes) | |
def cat(bitmasks_list: List["BitMasks"]) -> "BitMasks": | |
""" | |
Concatenates a list of BitMasks into a single BitMasks | |
Arguments: | |
bitmasks_list (list[BitMasks]) | |
Returns: | |
BitMasks: the concatenated BitMasks | |
""" | |
assert isinstance(bitmasks_list, (list, tuple)) | |
assert len(bitmasks_list) > 0 | |
assert all(isinstance(bitmask, BitMasks) for bitmask in bitmasks_list) | |
cat_bitmasks = type(bitmasks_list[0])(torch.cat([bm.tensor for bm in bitmasks_list], dim=0)) | |
return cat_bitmasks | |
class PolygonMasks: | |
""" | |
This class stores the segmentation masks for all objects in one image, in the form of polygons. | |
Attributes: | |
polygons: list[list[ndarray]]. Each ndarray is a float64 vector representing a polygon. | |
""" | |
def __init__(self, polygons: List[List[Union[torch.Tensor, np.ndarray]]]): | |
""" | |
Arguments: | |
polygons (list[list[np.ndarray]]): The first | |
level of the list correspond to individual instances, | |
the second level to all the polygons that compose the | |
instance, and the third level to the polygon coordinates. | |
The third level array should have the format of | |
[x0, y0, x1, y1, ..., xn, yn] (n >= 3). | |
""" | |
if not isinstance(polygons, list): | |
raise ValueError( | |
"Cannot create PolygonMasks: Expect a list of list of polygons per image. " | |
"Got '{}' instead.".format(type(polygons)) | |
) | |
def _make_array(t: Union[torch.Tensor, np.ndarray]) -> np.ndarray: | |
# Use float64 for higher precision, because why not? | |
# Always put polygons on CPU (self.to is a no-op) since they | |
# are supposed to be small tensors. | |
# May need to change this assumption if GPU placement becomes useful | |
if isinstance(t, torch.Tensor): | |
t = t.cpu().numpy() | |
return np.asarray(t).astype("float64") | |
def process_polygons( | |
polygons_per_instance: List[Union[torch.Tensor, np.ndarray]] | |
) -> List[np.ndarray]: | |
if not isinstance(polygons_per_instance, list): | |
raise ValueError( | |
"Cannot create polygons: Expect a list of polygons per instance. " | |
"Got '{}' instead.".format(type(polygons_per_instance)) | |
) | |
# transform each polygon to a numpy array | |
polygons_per_instance = [_make_array(p) for p in polygons_per_instance] | |
for polygon in polygons_per_instance: | |
if len(polygon) % 2 != 0 or len(polygon) < 6: | |
raise ValueError(f"Cannot create a polygon from {len(polygon)} coordinates.") | |
return polygons_per_instance | |
self.polygons: List[List[np.ndarray]] = [ | |
process_polygons(polygons_per_instance) for polygons_per_instance in polygons | |
] | |
def to(self, *args: Any, **kwargs: Any) -> "PolygonMasks": | |
return self | |
def device(self) -> torch.device: | |
return torch.device("cpu") | |
def get_bounding_boxes(self) -> Boxes: | |
""" | |
Returns: | |
Boxes: tight bounding boxes around polygon masks. | |
""" | |
boxes = torch.zeros(len(self.polygons), 4, dtype=torch.float32) | |
for idx, polygons_per_instance in enumerate(self.polygons): | |
minxy = torch.as_tensor([float("inf"), float("inf")], dtype=torch.float32) | |
maxxy = torch.zeros(2, dtype=torch.float32) | |
for polygon in polygons_per_instance: | |
coords = torch.from_numpy(polygon).view(-1, 2).to(dtype=torch.float32) | |
minxy = torch.min(minxy, torch.min(coords, dim=0).values) | |
maxxy = torch.max(maxxy, torch.max(coords, dim=0).values) | |
boxes[idx, :2] = minxy | |
boxes[idx, 2:] = maxxy | |
return Boxes(boxes) | |
def nonempty(self) -> torch.Tensor: | |
""" | |
Find masks that are non-empty. | |
Returns: | |
Tensor: | |
a BoolTensor which represents whether each mask is empty (False) or not (True). | |
""" | |
keep = [1 if len(polygon) > 0 else 0 for polygon in self.polygons] | |
return torch.from_numpy(np.asarray(keep, dtype=bool)) | |
def __getitem__(self, item: Union[int, slice, List[int], torch.BoolTensor]) -> "PolygonMasks": | |
""" | |
Support indexing over the instances and return a `PolygonMasks` object. | |
`item` can be: | |
1. An integer. It will return an object with only one instance. | |
2. A slice. It will return an object with the selected instances. | |
3. A list[int]. It will return an object with the selected instances, | |
correpsonding to the indices in the list. | |
4. A vector mask of type BoolTensor, whose length is num_instances. | |
It will return an object with the instances whose mask is nonzero. | |
""" | |
if isinstance(item, int): | |
selected_polygons = [self.polygons[item]] | |
elif isinstance(item, slice): | |
selected_polygons = self.polygons[item] | |
elif isinstance(item, list): | |
selected_polygons = [self.polygons[i] for i in item] | |
elif isinstance(item, torch.Tensor): | |
# Polygons is a list, so we have to move the indices back to CPU. | |
if item.dtype == torch.bool: | |
assert item.dim() == 1, item.shape | |
item = item.nonzero().squeeze(1).cpu().numpy().tolist() | |
elif item.dtype in [torch.int32, torch.int64]: | |
item = item.cpu().numpy().tolist() | |
else: | |
raise ValueError("Unsupported tensor dtype={} for indexing!".format(item.dtype)) | |
selected_polygons = [self.polygons[i] for i in item] | |
return PolygonMasks(selected_polygons) | |
def __iter__(self) -> Iterator[List[np.ndarray]]: | |
""" | |
Yields: | |
list[ndarray]: the polygons for one instance. | |
Each Tensor is a float64 vector representing a polygon. | |
""" | |
return iter(self.polygons) | |
def __repr__(self) -> str: | |
s = self.__class__.__name__ + "(" | |
s += "num_instances={})".format(len(self.polygons)) | |
return s | |
def __len__(self) -> int: | |
return len(self.polygons) | |
def crop_and_resize(self, boxes: torch.Tensor, mask_size: int) -> torch.Tensor: | |
""" | |
Crop each mask by the given box, and resize results to (mask_size, mask_size). | |
This can be used to prepare training targets for Mask R-CNN. | |
Args: | |
boxes (Tensor): Nx4 tensor storing the boxes for each mask | |
mask_size (int): the size of the rasterized mask. | |
Returns: | |
Tensor: A bool tensor of shape (N, mask_size, mask_size), where | |
N is the number of predicted boxes for this image. | |
""" | |
assert len(boxes) == len(self), "{} != {}".format(len(boxes), len(self)) | |
device = boxes.device | |
# Put boxes on the CPU, as the polygon representation is not efficient GPU-wise | |
# (several small tensors for representing a single instance mask) | |
boxes = boxes.to(torch.device("cpu")) | |
results = [ | |
rasterize_polygons_within_box(poly, box.numpy(), mask_size) | |
for poly, box in zip(self.polygons, boxes) | |
] | |
""" | |
poly: list[list[float]], the polygons for one instance | |
box: a tensor of shape (4,) | |
""" | |
if len(results) == 0: | |
return torch.empty(0, mask_size, mask_size, dtype=torch.bool, device=device) | |
return torch.stack(results, dim=0).to(device=device) | |
def area(self): | |
""" | |
Computes area of the mask. | |
Only works with Polygons, using the shoelace formula: | |
https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates | |
Returns: | |
Tensor: a vector, area for each instance | |
""" | |
area = [] | |
for polygons_per_instance in self.polygons: | |
area_per_instance = 0 | |
for p in polygons_per_instance: | |
area_per_instance += polygon_area(p[0::2], p[1::2]) | |
area.append(area_per_instance) | |
return torch.tensor(area) | |
def cat(polymasks_list: List["PolygonMasks"]) -> "PolygonMasks": | |
""" | |
Concatenates a list of PolygonMasks into a single PolygonMasks | |
Arguments: | |
polymasks_list (list[PolygonMasks]) | |
Returns: | |
PolygonMasks: the concatenated PolygonMasks | |
""" | |
assert isinstance(polymasks_list, (list, tuple)) | |
assert len(polymasks_list) > 0 | |
assert all(isinstance(polymask, PolygonMasks) for polymask in polymasks_list) | |
cat_polymasks = type(polymasks_list[0])( | |
list(itertools.chain.from_iterable(pm.polygons for pm in polymasks_list)) | |
) | |
return cat_polymasks | |
class ROIMasks: | |
""" | |
Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given, | |
full-image bitmask can be obtained by "pasting" the mask on the region defined | |
by the corresponding ROI box. | |
""" | |
def __init__(self, tensor: torch.Tensor): | |
""" | |
Args: | |
tensor: (N, M, M) mask tensor that defines the mask within each ROI. | |
""" | |
if tensor.dim() != 3: | |
raise ValueError("ROIMasks must take a masks of 3 dimension.") | |
self.tensor = tensor | |
def to(self, device: torch.device) -> "ROIMasks": | |
return ROIMasks(self.tensor.to(device)) | |
def device(self) -> device: | |
return self.tensor.device | |
def __len__(self): | |
return self.tensor.shape[0] | |
def __getitem__(self, item) -> "ROIMasks": | |
""" | |
Returns: | |
ROIMasks: Create a new :class:`ROIMasks` by indexing. | |
The following usage are allowed: | |
1. `new_masks = masks[2:10]`: return a slice of masks. | |
2. `new_masks = masks[vector]`, where vector is a torch.BoolTensor | |
with `length = len(masks)`. Nonzero elements in the vector will be selected. | |
Note that the returned object might share storage with this object, | |
subject to Pytorch's indexing semantics. | |
""" | |
t = self.tensor[item] | |
if t.dim() != 3: | |
raise ValueError( | |
f"Indexing on ROIMasks with {item} returns a tensor with shape {t.shape}!" | |
) | |
return ROIMasks(t) | |
def __repr__(self) -> str: | |
s = self.__class__.__name__ + "(" | |
s += "num_instances={})".format(len(self.tensor)) | |
return s | |
def to_bitmasks(self, boxes: torch.Tensor, height, width, threshold=0.5): | |
""" | |
Args: see documentation of :func:`paste_masks_in_image`. | |
""" | |
from detectron2.layers.mask_ops import paste_masks_in_image, _paste_masks_tensor_shape | |
if torch.jit.is_tracing(): | |
if isinstance(height, torch.Tensor): | |
paste_func = _paste_masks_tensor_shape | |
else: | |
paste_func = paste_masks_in_image | |
else: | |
paste_func = retry_if_cuda_oom(paste_masks_in_image) | |
bitmasks = paste_func(self.tensor, boxes.tensor, (height, width), threshold=threshold) | |
return BitMasks(bitmasks) | |