Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
import numpy as np | |
from itertools import count | |
import torch | |
from caffe2.proto import caffe2_pb2 | |
from caffe2.python import core | |
from .caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP, convert_batched_inputs_to_c2_format | |
from .shared import ScopedWS, get_pb_arg_vali, get_pb_arg_vals, infer_device_type | |
logger = logging.getLogger(__name__) | |
# ===== ref: mobile-vision predictor's 'Caffe2Wrapper' class ====== | |
class ProtobufModel(torch.nn.Module): | |
""" | |
Wrapper of a caffe2's protobuf model. | |
It works just like nn.Module, but running caffe2 under the hood. | |
Input/Output are tuple[tensor] that match the caffe2 net's external_input/output. | |
""" | |
_ids = count(0) | |
def __init__(self, predict_net, init_net): | |
logger.info(f"Initializing ProtobufModel for: {predict_net.name} ...") | |
super().__init__() | |
assert isinstance(predict_net, caffe2_pb2.NetDef) | |
assert isinstance(init_net, caffe2_pb2.NetDef) | |
# create unique temporary workspace for each instance | |
self.ws_name = "__tmp_ProtobufModel_{}__".format(next(self._ids)) | |
self.net = core.Net(predict_net) | |
logger.info("Running init_net once to fill the parameters ...") | |
with ScopedWS(self.ws_name, is_reset=True, is_cleanup=False) as ws: | |
ws.RunNetOnce(init_net) | |
uninitialized_external_input = [] | |
for blob in self.net.Proto().external_input: | |
if blob not in ws.Blobs(): | |
uninitialized_external_input.append(blob) | |
ws.CreateBlob(blob) | |
ws.CreateNet(self.net) | |
self._error_msgs = set() | |
self._input_blobs = uninitialized_external_input | |
def _infer_output_devices(self, inputs): | |
""" | |
Returns: | |
list[str]: list of device for each external output | |
""" | |
def _get_device_type(torch_tensor): | |
assert torch_tensor.device.type in ["cpu", "cuda"] | |
assert torch_tensor.device.index == 0 | |
return torch_tensor.device.type | |
predict_net = self.net.Proto() | |
input_device_types = { | |
(name, 0): _get_device_type(tensor) for name, tensor in zip(self._input_blobs, inputs) | |
} | |
device_type_map = infer_device_type( | |
predict_net, known_status=input_device_types, device_name_style="pytorch" | |
) | |
ssa, versions = core.get_ssa(predict_net) | |
versioned_outputs = [(name, versions[name]) for name in predict_net.external_output] | |
output_devices = [device_type_map[outp] for outp in versioned_outputs] | |
return output_devices | |
def forward(self, inputs): | |
""" | |
Args: | |
inputs (tuple[torch.Tensor]) | |
Returns: | |
tuple[torch.Tensor] | |
""" | |
assert len(inputs) == len(self._input_blobs), ( | |
f"Length of inputs ({len(inputs)}) " | |
f"doesn't match the required input blobs: {self._input_blobs}" | |
) | |
with ScopedWS(self.ws_name, is_reset=False, is_cleanup=False) as ws: | |
for b, tensor in zip(self._input_blobs, inputs): | |
ws.FeedBlob(b, tensor) | |
try: | |
ws.RunNet(self.net.Proto().name) | |
except RuntimeError as e: | |
if not str(e) in self._error_msgs: | |
self._error_msgs.add(str(e)) | |
logger.warning("Encountered new RuntimeError: \n{}".format(str(e))) | |
logger.warning("Catch the error and use partial results.") | |
c2_outputs = [ws.FetchBlob(b) for b in self.net.Proto().external_output] | |
# Remove outputs of current run, this is necessary in order to | |
# prevent fetching the result from previous run if the model fails | |
# in the middle. | |
for b in self.net.Proto().external_output: | |
# Needs to create uninitialized blob to make the net runable. | |
# This is "equivalent" to: ws.RemoveBlob(b) then ws.CreateBlob(b), | |
# but there'no such API. | |
ws.FeedBlob(b, f"{b}, a C++ native class of type nullptr (uninitialized).") | |
# Cast output to torch.Tensor on the desired device | |
output_devices = ( | |
self._infer_output_devices(inputs) | |
if any(t.device.type != "cpu" for t in inputs) | |
else ["cpu" for _ in self.net.Proto().external_output] | |
) | |
outputs = [] | |
for name, c2_output, device in zip( | |
self.net.Proto().external_output, c2_outputs, output_devices | |
): | |
if not isinstance(c2_output, np.ndarray): | |
raise RuntimeError( | |
"Invalid output for blob {}, received: {}".format(name, c2_output) | |
) | |
outputs.append(torch.tensor(c2_output).to(device=device)) | |
return tuple(outputs) | |
class ProtobufDetectionModel(torch.nn.Module): | |
""" | |
A class works just like a pytorch meta arch in terms of inference, but running | |
caffe2 model under the hood. | |
""" | |
def __init__(self, predict_net, init_net, *, convert_outputs=None): | |
""" | |
Args: | |
predict_net, init_net (core.Net): caffe2 nets | |
convert_outptus (callable): a function that converts caffe2 | |
outputs to the same format of the original pytorch model. | |
By default, use the one defined in the caffe2 meta_arch. | |
""" | |
super().__init__() | |
self.protobuf_model = ProtobufModel(predict_net, init_net) | |
self.size_divisibility = get_pb_arg_vali(predict_net, "size_divisibility", 0) | |
self.device = get_pb_arg_vals(predict_net, "device", b"cpu").decode("ascii") | |
if convert_outputs is None: | |
meta_arch = get_pb_arg_vals(predict_net, "meta_architecture", b"GeneralizedRCNN") | |
meta_arch = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[meta_arch.decode("ascii")] | |
self._convert_outputs = meta_arch.get_outputs_converter(predict_net, init_net) | |
else: | |
self._convert_outputs = convert_outputs | |
def _convert_inputs(self, batched_inputs): | |
# currently all models convert inputs in the same way | |
return convert_batched_inputs_to_c2_format( | |
batched_inputs, self.size_divisibility, self.device | |
) | |
def forward(self, batched_inputs): | |
c2_inputs = self._convert_inputs(batched_inputs) | |
c2_results = self.protobuf_model(c2_inputs) | |
c2_results = dict(zip(self.protobuf_model.net.Proto().external_output, c2_results)) | |
return self._convert_outputs(batched_inputs, c2_inputs, c2_results) | |