Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import collections | |
import copy | |
import functools | |
import logging | |
import numpy as np | |
import os | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
from unittest import mock | |
import caffe2.python.utils as putils | |
import torch | |
import torch.nn.functional as F | |
from caffe2.proto import caffe2_pb2 | |
from caffe2.python import core, net_drawer, workspace | |
from torch.nn.functional import interpolate as interp | |
logger = logging.getLogger(__name__) | |
# ==== torch/utils_toffee/cast.py ======================================= | |
def to_device(t, device_str): | |
""" | |
This function is a replacement of .to(another_device) such that it allows the | |
casting to be traced properly by explicitly calling the underlying copy ops. | |
It also avoids introducing unncessary op when casting to the same device. | |
""" | |
src = t.device | |
dst = torch.device(device_str) | |
if src == dst: | |
return t | |
elif src.type == "cuda" and dst.type == "cpu": | |
return torch.ops._caffe2.CopyGPUToCPU(t) | |
elif src.type == "cpu" and dst.type == "cuda": | |
return torch.ops._caffe2.CopyCPUToGPU(t) | |
else: | |
raise RuntimeError("Can't cast tensor from device {} to device {}".format(src, dst)) | |
# ==== torch/utils_toffee/interpolate.py ======================================= | |
# Note: borrowed from vision/detection/fair/detectron/detectron/modeling/detector.py | |
def BilinearInterpolation(tensor_in, up_scale): | |
assert up_scale % 2 == 0, "Scale should be even" | |
def upsample_filt(size): | |
factor = (size + 1) // 2 | |
if size % 2 == 1: | |
center = factor - 1 | |
else: | |
center = factor - 0.5 | |
og = np.ogrid[:size, :size] | |
return (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor) | |
kernel_size = int(up_scale) * 2 | |
bil_filt = upsample_filt(kernel_size) | |
dim = int(tensor_in.shape[1]) | |
kernel = np.zeros((dim, dim, kernel_size, kernel_size), dtype=np.float32) | |
kernel[range(dim), range(dim), :, :] = bil_filt | |
tensor_out = F.conv_transpose2d( | |
tensor_in, | |
weight=to_device(torch.Tensor(kernel), tensor_in.device), | |
bias=None, | |
stride=int(up_scale), | |
padding=int(up_scale / 2), | |
) | |
return tensor_out | |
# NOTE: ONNX is incompatible with traced torch.nn.functional.interpolate if | |
# using dynamic `scale_factor` rather than static `size`. (T43166860) | |
# NOTE: Caffe2 Int8 conversion might not be able to quantize `size` properly. | |
def onnx_compatibale_interpolate( | |
input, size=None, scale_factor=None, mode="nearest", align_corners=None | |
): | |
# NOTE: The input dimensions are interpreted in the form: | |
# `mini-batch x channels x [optional depth] x [optional height] x width`. | |
if size is None and scale_factor is not None: | |
if input.dim() == 4: | |
if isinstance(scale_factor, (int, float)): | |
height_scale, width_scale = (scale_factor, scale_factor) | |
else: | |
assert isinstance(scale_factor, (tuple, list)) | |
assert len(scale_factor) == 2 | |
height_scale, width_scale = scale_factor | |
assert not align_corners, "No matching C2 op for align_corners == True" | |
if mode == "nearest": | |
return torch.ops._caffe2.ResizeNearest( | |
input, order="NCHW", width_scale=width_scale, height_scale=height_scale | |
) | |
elif mode == "bilinear": | |
logger.warning( | |
"Use F.conv_transpose2d for bilinear interpolate" | |
" because there's no such C2 op, this may cause significant" | |
" slowdown and the boundary pixels won't be as same as" | |
" using F.interpolate due to padding." | |
) | |
assert height_scale == width_scale | |
return BilinearInterpolation(input, up_scale=height_scale) | |
logger.warning("Output size is not static, it might cause ONNX conversion issue") | |
return interp(input, size, scale_factor, mode, align_corners) | |
def mock_torch_nn_functional_interpolate(): | |
def decorator(func): | |
def _mock_torch_nn_functional_interpolate(*args, **kwargs): | |
if torch.onnx.is_in_onnx_export(): | |
with mock.patch( | |
"torch.nn.functional.interpolate", side_effect=onnx_compatibale_interpolate | |
): | |
return func(*args, **kwargs) | |
else: | |
return func(*args, **kwargs) | |
return _mock_torch_nn_functional_interpolate | |
return decorator | |
# ==== torch/utils_caffe2/ws_utils.py ========================================== | |
class ScopedWS: | |
def __init__(self, ws_name, is_reset, is_cleanup=False): | |
self.ws_name = ws_name | |
self.is_reset = is_reset | |
self.is_cleanup = is_cleanup | |
self.org_ws = "" | |
def __enter__(self): | |
self.org_ws = workspace.CurrentWorkspace() | |
if self.ws_name is not None: | |
workspace.SwitchWorkspace(self.ws_name, True) | |
if self.is_reset: | |
workspace.ResetWorkspace() | |
return workspace | |
def __exit__(self, *args): | |
if self.is_cleanup: | |
workspace.ResetWorkspace() | |
if self.ws_name is not None: | |
workspace.SwitchWorkspace(self.org_ws) | |
def fetch_any_blob(name): | |
bb = None | |
try: | |
bb = workspace.FetchBlob(name) | |
except TypeError: | |
bb = workspace.FetchInt8Blob(name) | |
except Exception as e: | |
logger.error("Get blob {} error: {}".format(name, e)) | |
return bb | |
# ==== torch/utils_caffe2/protobuf.py ========================================== | |
def get_pb_arg(pb, arg_name): | |
for x in pb.arg: | |
if x.name == arg_name: | |
return x | |
return None | |
def get_pb_arg_valf(pb, arg_name, default_val): | |
arg = get_pb_arg(pb, arg_name) | |
return arg.f if arg is not None else default_val | |
def get_pb_arg_floats(pb, arg_name, default_val): | |
arg = get_pb_arg(pb, arg_name) | |
return list(map(float, arg.floats)) if arg is not None else default_val | |
def get_pb_arg_ints(pb, arg_name, default_val): | |
arg = get_pb_arg(pb, arg_name) | |
return list(map(int, arg.ints)) if arg is not None else default_val | |
def get_pb_arg_vali(pb, arg_name, default_val): | |
arg = get_pb_arg(pb, arg_name) | |
return arg.i if arg is not None else default_val | |
def get_pb_arg_vals(pb, arg_name, default_val): | |
arg = get_pb_arg(pb, arg_name) | |
return arg.s if arg is not None else default_val | |
def get_pb_arg_valstrings(pb, arg_name, default_val): | |
arg = get_pb_arg(pb, arg_name) | |
return list(arg.strings) if arg is not None else default_val | |
def check_set_pb_arg(pb, arg_name, arg_attr, arg_value, allow_override=False): | |
arg = get_pb_arg(pb, arg_name) | |
if arg is None: | |
arg = putils.MakeArgument(arg_name, arg_value) | |
assert hasattr(arg, arg_attr) | |
pb.arg.extend([arg]) | |
if allow_override and getattr(arg, arg_attr) != arg_value: | |
logger.warning( | |
"Override argument {}: {} -> {}".format(arg_name, getattr(arg, arg_attr), arg_value) | |
) | |
setattr(arg, arg_attr, arg_value) | |
else: | |
assert arg is not None | |
assert getattr(arg, arg_attr) == arg_value, "Existing value {}, new value {}".format( | |
getattr(arg, arg_attr), arg_value | |
) | |
def _create_const_fill_op_from_numpy(name, tensor, device_option=None): | |
assert type(tensor) == np.ndarray | |
kTypeNameMapper = { | |
np.dtype("float32"): "GivenTensorFill", | |
np.dtype("int32"): "GivenTensorIntFill", | |
np.dtype("int64"): "GivenTensorInt64Fill", | |
np.dtype("uint8"): "GivenTensorStringFill", | |
} | |
args_dict = {} | |
if tensor.dtype == np.dtype("uint8"): | |
args_dict.update({"values": [str(tensor.data)], "shape": [1]}) | |
else: | |
args_dict.update({"values": tensor, "shape": tensor.shape}) | |
if device_option is not None: | |
args_dict["device_option"] = device_option | |
return core.CreateOperator(kTypeNameMapper[tensor.dtype], [], [name], **args_dict) | |
def _create_const_fill_op_from_c2_int8_tensor(name, int8_tensor): | |
assert type(int8_tensor) == workspace.Int8Tensor | |
kTypeNameMapper = { | |
np.dtype("int32"): "Int8GivenIntTensorFill", | |
np.dtype("uint8"): "Int8GivenTensorFill", | |
} | |
tensor = int8_tensor.data | |
assert tensor.dtype in [np.dtype("uint8"), np.dtype("int32")] | |
values = tensor.tobytes() if tensor.dtype == np.dtype("uint8") else tensor | |
return core.CreateOperator( | |
kTypeNameMapper[tensor.dtype], | |
[], | |
[name], | |
values=values, | |
shape=tensor.shape, | |
Y_scale=int8_tensor.scale, | |
Y_zero_point=int8_tensor.zero_point, | |
) | |
def create_const_fill_op( | |
name: str, | |
blob: Union[np.ndarray, workspace.Int8Tensor], | |
device_option: Optional[caffe2_pb2.DeviceOption] = None, | |
) -> caffe2_pb2.OperatorDef: | |
""" | |
Given a blob object, return the Caffe2 operator that creates this blob | |
as constant. Currently support NumPy tensor and Caffe2 Int8Tensor. | |
""" | |
tensor_type = type(blob) | |
assert tensor_type in [ | |
np.ndarray, | |
workspace.Int8Tensor, | |
], 'Error when creating const fill op for "{}", unsupported blob type: {}'.format( | |
name, type(blob) | |
) | |
if tensor_type == np.ndarray: | |
return _create_const_fill_op_from_numpy(name, blob, device_option) | |
elif tensor_type == workspace.Int8Tensor: | |
assert device_option is None | |
return _create_const_fill_op_from_c2_int8_tensor(name, blob) | |
def construct_init_net_from_params( | |
params: Dict[str, Any], device_options: Optional[Dict[str, caffe2_pb2.DeviceOption]] = None | |
) -> caffe2_pb2.NetDef: | |
""" | |
Construct the init_net from params dictionary | |
""" | |
init_net = caffe2_pb2.NetDef() | |
device_options = device_options or {} | |
for name, blob in params.items(): | |
if isinstance(blob, str): | |
logger.warning( | |
( | |
"Blob {} with type {} is not supported in generating init net," | |
" skipped.".format(name, type(blob)) | |
) | |
) | |
continue | |
init_net.op.extend( | |
[create_const_fill_op(name, blob, device_option=device_options.get(name, None))] | |
) | |
init_net.external_output.append(name) | |
return init_net | |
def get_producer_map(ssa): | |
""" | |
Return dict from versioned blob to (i, j), | |
where i is index of producer op, j is the index of output of that op. | |
""" | |
producer_map = {} | |
for i in range(len(ssa)): | |
outputs = ssa[i][1] | |
for j, outp in enumerate(outputs): | |
producer_map[outp] = (i, j) | |
return producer_map | |
def get_consumer_map(ssa): | |
""" | |
Return dict from versioned blob to list of (i, j), | |
where i is index of consumer op, j is the index of input of that op. | |
""" | |
consumer_map = collections.defaultdict(list) | |
for i in range(len(ssa)): | |
inputs = ssa[i][0] | |
for j, inp in enumerate(inputs): | |
consumer_map[inp].append((i, j)) | |
return consumer_map | |
def get_params_from_init_net( | |
init_net: caffe2_pb2.NetDef, | |
) -> [Dict[str, Any], Dict[str, caffe2_pb2.DeviceOption]]: | |
""" | |
Take the output blobs from init_net by running it. | |
Outputs: | |
params: dict from blob name to numpy array | |
device_options: dict from blob name to the device option of its creating op | |
""" | |
# NOTE: this assumes that the params is determined by producer op with the | |
# only exception be CopyGPUToCPU which is CUDA op but returns CPU tensor. | |
def _get_device_option(producer_op): | |
if producer_op.type == "CopyGPUToCPU": | |
return caffe2_pb2.DeviceOption() | |
else: | |
return producer_op.device_option | |
with ScopedWS("__get_params_from_init_net__", is_reset=True, is_cleanup=True) as ws: | |
ws.RunNetOnce(init_net) | |
params = {b: fetch_any_blob(b) for b in init_net.external_output} | |
ssa, versions = core.get_ssa(init_net) | |
producer_map = get_producer_map(ssa) | |
device_options = { | |
b: _get_device_option(init_net.op[producer_map[(b, versions[b])][0]]) | |
for b in init_net.external_output | |
} | |
return params, device_options | |
def _updater_raise(op, input_types, output_types): | |
raise RuntimeError( | |
"Failed to apply updater for op {} given input_types {} and" | |
" output_types {}".format(op, input_types, output_types) | |
) | |
def _generic_status_identifier( | |
predict_net: caffe2_pb2.NetDef, | |
status_updater: Callable, | |
known_status: Dict[Tuple[str, int], Any], | |
) -> Dict[Tuple[str, int], Any]: | |
""" | |
Statically infer the status of each blob, the status can be such as device type | |
(CPU/GPU), layout (NCHW/NHWC), data type (float32/int8), etc. "Blob" here | |
is versioned blob (Tuple[str, int]) in the format compatible with ssa. | |
Inputs: | |
predict_net: the caffe2 network | |
status_updater: a callable, given an op and the status of its input/output, | |
it returns the updated status of input/output. `None` is used for | |
representing unknown status. | |
known_status: a dict containing known status, used as initialization. | |
Outputs: | |
A dict mapping from versioned blob to its status | |
""" | |
ssa, versions = core.get_ssa(predict_net) | |
versioned_ext_input = [(b, 0) for b in predict_net.external_input] | |
versioned_ext_output = [(b, versions[b]) for b in predict_net.external_output] | |
all_versioned_blobs = set().union(*[set(x[0] + x[1]) for x in ssa]) | |
allowed_vbs = all_versioned_blobs.union(versioned_ext_input).union(versioned_ext_output) | |
assert all(k in allowed_vbs for k in known_status) | |
assert all(v is not None for v in known_status.values()) | |
_known_status = copy.deepcopy(known_status) | |
def _check_and_update(key, value): | |
assert value is not None | |
if key in _known_status: | |
if not _known_status[key] == value: | |
raise RuntimeError( | |
"Confilict status for {}, existing status {}, new status {}".format( | |
key, _known_status[key], value | |
) | |
) | |
_known_status[key] = value | |
def _update_i(op, ssa_i): | |
versioned_inputs = ssa_i[0] | |
versioned_outputs = ssa_i[1] | |
inputs_status = [_known_status.get(b, None) for b in versioned_inputs] | |
outputs_status = [_known_status.get(b, None) for b in versioned_outputs] | |
new_inputs_status, new_outputs_status = status_updater(op, inputs_status, outputs_status) | |
for versioned_blob, status in zip( | |
versioned_inputs + versioned_outputs, new_inputs_status + new_outputs_status | |
): | |
if status is not None: | |
_check_and_update(versioned_blob, status) | |
for op, ssa_i in zip(predict_net.op, ssa): | |
_update_i(op, ssa_i) | |
for op, ssa_i in zip(reversed(predict_net.op), reversed(ssa)): | |
_update_i(op, ssa_i) | |
# NOTE: This strictly checks all the blob from predict_net must be assgined | |
# a known status. However sometimes it's impossible (eg. having deadend op), | |
# we may relax this constraint if | |
for k in all_versioned_blobs: | |
if k not in _known_status: | |
raise NotImplementedError( | |
"Can not infer the status for {}. Currently only support the case where" | |
" a single forward and backward pass can identify status for all blobs.".format(k) | |
) | |
return _known_status | |
def infer_device_type( | |
predict_net: caffe2_pb2.NetDef, | |
known_status: Dict[Tuple[str, int], Any], | |
device_name_style: str = "caffe2", | |
) -> Dict[Tuple[str, int], str]: | |
"""Return the device type ("cpu" or "gpu"/"cuda") of each (versioned) blob""" | |
assert device_name_style in ["caffe2", "pytorch"] | |
_CPU_STR = "cpu" | |
_GPU_STR = "gpu" if device_name_style == "caffe2" else "cuda" | |
def _copy_cpu_to_gpu_updater(op, input_types, output_types): | |
if input_types[0] == _GPU_STR or output_types[0] == _CPU_STR: | |
_updater_raise(op, input_types, output_types) | |
return ([_CPU_STR], [_GPU_STR]) | |
def _copy_gpu_to_cpu_updater(op, input_types, output_types): | |
if input_types[0] == _CPU_STR or output_types[0] == _GPU_STR: | |
_updater_raise(op, input_types, output_types) | |
return ([_GPU_STR], [_CPU_STR]) | |
def _other_ops_updater(op, input_types, output_types): | |
non_none_types = [x for x in input_types + output_types if x is not None] | |
if len(non_none_types) > 0: | |
the_type = non_none_types[0] | |
if not all(x == the_type for x in non_none_types): | |
_updater_raise(op, input_types, output_types) | |
else: | |
the_type = None | |
return ([the_type for _ in op.input], [the_type for _ in op.output]) | |
def _device_updater(op, *args, **kwargs): | |
return { | |
"CopyCPUToGPU": _copy_cpu_to_gpu_updater, | |
"CopyGPUToCPU": _copy_gpu_to_cpu_updater, | |
}.get(op.type, _other_ops_updater)(op, *args, **kwargs) | |
return _generic_status_identifier(predict_net, _device_updater, known_status) | |
# ==== torch/utils_caffe2/vis.py =============================================== | |
def _modify_blob_names(ops, blob_rename_f): | |
ret = [] | |
def _replace_list(blob_list, replaced_list): | |
del blob_list[:] | |
blob_list.extend(replaced_list) | |
for x in ops: | |
cur = copy.deepcopy(x) | |
_replace_list(cur.input, list(map(blob_rename_f, cur.input))) | |
_replace_list(cur.output, list(map(blob_rename_f, cur.output))) | |
ret.append(cur) | |
return ret | |
def _rename_blob(name, blob_sizes, blob_ranges): | |
def _list_to_str(bsize): | |
ret = ", ".join([str(x) for x in bsize]) | |
ret = "[" + ret + "]" | |
return ret | |
ret = name | |
if blob_sizes is not None and name in blob_sizes: | |
ret += "\n" + _list_to_str(blob_sizes[name]) | |
if blob_ranges is not None and name in blob_ranges: | |
ret += "\n" + _list_to_str(blob_ranges[name]) | |
return ret | |
# graph_name could not contain word 'graph' | |
def save_graph(net, file_name, graph_name="net", op_only=True, blob_sizes=None, blob_ranges=None): | |
blob_rename_f = functools.partial(_rename_blob, blob_sizes=blob_sizes, blob_ranges=blob_ranges) | |
return save_graph_base(net, file_name, graph_name, op_only, blob_rename_f) | |
def save_graph_base(net, file_name, graph_name="net", op_only=True, blob_rename_func=None): | |
graph = None | |
ops = net.op | |
if blob_rename_func is not None: | |
ops = _modify_blob_names(ops, blob_rename_func) | |
if not op_only: | |
graph = net_drawer.GetPydotGraph(ops, graph_name, rankdir="TB") | |
else: | |
graph = net_drawer.GetPydotGraphMinimal( | |
ops, graph_name, rankdir="TB", minimal_dependency=True | |
) | |
try: | |
par_dir = os.path.dirname(file_name) | |
if not os.path.exists(par_dir): | |
os.makedirs(par_dir) | |
format = os.path.splitext(os.path.basename(file_name))[-1] | |
if format == ".png": | |
graph.write_png(file_name) | |
elif format == ".pdf": | |
graph.write_pdf(file_name) | |
elif format == ".svg": | |
graph.write_svg(file_name) | |
else: | |
print("Incorrect format {}".format(format)) | |
except Exception as e: | |
print("Error when writing graph to image {}".format(e)) | |
return graph | |
# ==== torch/utils_toffee/aten_to_caffe2.py ==================================== | |
def group_norm_replace_aten_with_caffe2(predict_net: caffe2_pb2.NetDef): | |
""" | |
For ONNX exported model, GroupNorm will be represented as ATen op, | |
this can be a drop in replacement from ATen to GroupNorm | |
""" | |
count = 0 | |
for op in predict_net.op: | |
if op.type == "ATen": | |
op_name = get_pb_arg_vals(op, "operator", None) # return byte in py3 | |
if op_name and op_name.decode() == "group_norm": | |
op.arg.remove(get_pb_arg(op, "operator")) | |
if get_pb_arg_vali(op, "cudnn_enabled", None): | |
op.arg.remove(get_pb_arg(op, "cudnn_enabled")) | |
num_groups = get_pb_arg_vali(op, "num_groups", None) | |
if num_groups is not None: | |
op.arg.remove(get_pb_arg(op, "num_groups")) | |
check_set_pb_arg(op, "group", "i", num_groups) | |
op.type = "GroupNorm" | |
count += 1 | |
if count > 1: | |
logger.info("Replaced {} ATen operator to GroupNormOp".format(count)) | |
# ==== torch/utils_toffee/alias.py ============================================= | |
def alias(x, name, is_backward=False): | |
if not torch.onnx.is_in_onnx_export(): | |
return x | |
assert isinstance(x, torch.Tensor) | |
return torch.ops._caffe2.AliasWithName(x, name, is_backward=is_backward) | |
def fuse_alias_placeholder(predict_net, init_net): | |
"""Remove AliasWithName placeholder and rename the input/output of it""" | |
# First we finish all the re-naming | |
for i, op in enumerate(predict_net.op): | |
if op.type == "AliasWithName": | |
assert len(op.input) == 1 | |
assert len(op.output) == 1 | |
name = get_pb_arg_vals(op, "name", None).decode() | |
is_backward = bool(get_pb_arg_vali(op, "is_backward", 0)) | |
rename_op_input(predict_net, init_net, i, 0, name, from_producer=is_backward) | |
rename_op_output(predict_net, i, 0, name) | |
# Remove AliasWithName, should be very safe since it's a non-op | |
new_ops = [] | |
for op in predict_net.op: | |
if op.type != "AliasWithName": | |
new_ops.append(op) | |
else: | |
# safety check | |
assert op.input == op.output | |
assert op.input[0] == op.arg[0].s.decode() | |
del predict_net.op[:] | |
predict_net.op.extend(new_ops) | |
# ==== torch/utils_caffe2/graph_transform.py =================================== | |
class IllegalGraphTransformError(ValueError): | |
"""When a graph transform function call can't be executed.""" | |
def _rename_versioned_blob_in_proto( | |
proto: caffe2_pb2.NetDef, | |
old_name: str, | |
new_name: str, | |
version: int, | |
ssa: List[Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]], | |
start_versions: Dict[str, int], | |
end_versions: Dict[str, int], | |
): | |
"""In given proto, rename all blobs with matched version""" | |
# Operater list | |
for op, i_th_ssa in zip(proto.op, ssa): | |
versioned_inputs, versioned_outputs = i_th_ssa | |
for i in range(len(op.input)): | |
if versioned_inputs[i] == (old_name, version): | |
op.input[i] = new_name | |
for i in range(len(op.output)): | |
if versioned_outputs[i] == (old_name, version): | |
op.output[i] = new_name | |
# external_input | |
if start_versions.get(old_name, 0) == version: | |
for i in range(len(proto.external_input)): | |
if proto.external_input[i] == old_name: | |
proto.external_input[i] = new_name | |
# external_output | |
if end_versions.get(old_name, 0) == version: | |
for i in range(len(proto.external_output)): | |
if proto.external_output[i] == old_name: | |
proto.external_output[i] = new_name | |
def rename_op_input( | |
predict_net: caffe2_pb2.NetDef, | |
init_net: caffe2_pb2.NetDef, | |
op_id: int, | |
input_id: int, | |
new_name: str, | |
from_producer: bool = False, | |
): | |
""" | |
Rename the op_id-th operator in predict_net, change it's input_id-th input's | |
name to the new_name. It also does automatic re-route and change | |
external_input and init_net if necessary. | |
- It requires the input is only consumed by this op. | |
- This function modifies predict_net and init_net in-place. | |
- When from_producer is enable, this also updates other operators that consumes | |
the same input. Be cautious because may trigger unintended behavior. | |
""" | |
assert isinstance(predict_net, caffe2_pb2.NetDef) | |
assert isinstance(init_net, caffe2_pb2.NetDef) | |
init_net_ssa, init_net_versions = core.get_ssa(init_net) | |
predict_net_ssa, predict_net_versions = core.get_ssa( | |
predict_net, copy.deepcopy(init_net_versions) | |
) | |
versioned_inputs, versioned_outputs = predict_net_ssa[op_id] | |
old_name, version = versioned_inputs[input_id] | |
if from_producer: | |
producer_map = get_producer_map(predict_net_ssa) | |
if not (old_name, version) in producer_map: | |
raise NotImplementedError( | |
"Can't find producer, the input {} is probably from" | |
" init_net, this is not supported yet.".format(old_name) | |
) | |
producer = producer_map[(old_name, version)] | |
rename_op_output(predict_net, producer[0], producer[1], new_name) | |
return | |
def contain_targets(op_ssa): | |
return (old_name, version) in op_ssa[0] | |
is_consumer = [contain_targets(op_ssa) for op_ssa in predict_net_ssa] | |
if sum(is_consumer) > 1: | |
raise IllegalGraphTransformError( | |
( | |
"Input '{}' of operator(#{}) are consumed by other ops, please use" | |
+ " rename_op_output on the producer instead. Offending op: \n{}" | |
).format(old_name, op_id, predict_net.op[op_id]) | |
) | |
# update init_net | |
_rename_versioned_blob_in_proto( | |
init_net, old_name, new_name, version, init_net_ssa, {}, init_net_versions | |
) | |
# update predict_net | |
_rename_versioned_blob_in_proto( | |
predict_net, | |
old_name, | |
new_name, | |
version, | |
predict_net_ssa, | |
init_net_versions, | |
predict_net_versions, | |
) | |
def rename_op_output(predict_net: caffe2_pb2.NetDef, op_id: int, output_id: int, new_name: str): | |
""" | |
Rename the op_id-th operator in predict_net, change it's output_id-th input's | |
name to the new_name. It also does automatic re-route and change | |
external_output and if necessary. | |
- It allows multiple consumers of its output. | |
- This function modifies predict_net in-place, doesn't need init_net. | |
""" | |
assert isinstance(predict_net, caffe2_pb2.NetDef) | |
ssa, blob_versions = core.get_ssa(predict_net) | |
versioned_inputs, versioned_outputs = ssa[op_id] | |
old_name, version = versioned_outputs[output_id] | |
# update predict_net | |
_rename_versioned_blob_in_proto( | |
predict_net, old_name, new_name, version, ssa, {}, blob_versions | |
) | |
def get_sub_graph_external_input_output( | |
predict_net: caffe2_pb2.NetDef, sub_graph_op_indices: List[int] | |
) -> Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]: | |
""" | |
Return the list of external input/output of sub-graph, | |
each element is tuple of the name and corresponding version in predict_net. | |
external input/output is defined the same way as caffe2 NetDef. | |
""" | |
ssa, versions = core.get_ssa(predict_net) | |
all_inputs = [] | |
all_outputs = [] | |
for op_id in sub_graph_op_indices: | |
all_inputs += [inp for inp in ssa[op_id][0] if inp not in all_inputs] | |
all_outputs += list(ssa[op_id][1]) # ssa output won't repeat | |
# for versioned blobs, external inputs are just those blob in all_inputs | |
# but not in all_outputs | |
ext_inputs = [inp for inp in all_inputs if inp not in all_outputs] | |
# external outputs are essentially outputs of this subgraph that are used | |
# outside of this sub-graph (including predict_net.external_output) | |
all_other_inputs = sum( | |
(ssa[i][0] for i in range(len(ssa)) if i not in sub_graph_op_indices), | |
[(outp, versions[outp]) for outp in predict_net.external_output], | |
) | |
ext_outputs = [outp for outp in all_outputs if outp in set(all_other_inputs)] | |
return ext_inputs, ext_outputs | |
class DiGraph: | |
"""A DAG representation of caffe2 graph, each vertice is a versioned blob.""" | |
def __init__(self): | |
self.vertices = set() | |
self.graph = collections.defaultdict(list) | |
def add_edge(self, u, v): | |
self.graph[u].append(v) | |
self.vertices.add(u) | |
self.vertices.add(v) | |
# grab from https://www.geeksforgeeks.org/find-paths-given-source-destination/ | |
def get_all_paths(self, s, d): | |
visited = {k: False for k in self.vertices} | |
path = [] | |
all_paths = [] | |
def _get_all_paths_util(graph, u, d, visited, path): | |
visited[u] = True | |
path.append(u) | |
if u == d: | |
all_paths.append(copy.deepcopy(path)) | |
else: | |
for i in graph[u]: | |
if not visited[i]: | |
_get_all_paths_util(graph, i, d, visited, path) | |
path.pop() | |
visited[u] = False | |
_get_all_paths_util(self.graph, s, d, visited, path) | |
return all_paths | |
def from_ssa(ssa): | |
graph = DiGraph() | |
for op_id in range(len(ssa)): | |
for inp in ssa[op_id][0]: | |
for outp in ssa[op_id][1]: | |
graph.add_edge(inp, outp) | |
return graph | |
def _get_dependency_chain(ssa, versioned_target, versioned_source): | |
""" | |
Return the index list of relevant operator to produce target blob from source blob, | |
if there's no dependency, return empty list. | |
""" | |
# finding all paths between nodes can be O(N!), thus we can only search | |
# in the subgraph using the op starting from the first consumer of source blob | |
# to the producer of the target blob. | |
consumer_map = get_consumer_map(ssa) | |
producer_map = get_producer_map(ssa) | |
start_op = min(x[0] for x in consumer_map[versioned_source]) - 15 | |
end_op = ( | |
producer_map[versioned_target][0] + 15 if versioned_target in producer_map else start_op | |
) | |
sub_graph_ssa = ssa[start_op : end_op + 1] | |
if len(sub_graph_ssa) > 30: | |
logger.warning( | |
"Subgraph bebetween {} and {} is large (from op#{} to op#{}), it" | |
" might take non-trival time to find all paths between them.".format( | |
versioned_source, versioned_target, start_op, end_op | |
) | |
) | |
dag = DiGraph.from_ssa(sub_graph_ssa) | |
paths = dag.get_all_paths(versioned_source, versioned_target) # include two ends | |
ops_in_paths = [[producer_map[blob][0] for blob in path[1:]] for path in paths] | |
return sorted(set().union(*[set(ops) for ops in ops_in_paths])) | |
def identify_reshape_sub_graph(predict_net: caffe2_pb2.NetDef) -> List[List[int]]: | |
""" | |
Idenfity the reshape sub-graph in a protobuf. | |
The reshape sub-graph is defined as matching the following pattern: | |
(input_blob) -> Op_1 -> ... -> Op_N -> (new_shape) -─┐ | |
└-------------------------------------------> Reshape -> (output_blob) | |
Return: | |
List of sub-graphs, each sub-graph is represented as a list of indices | |
of the relavent ops, [Op_1, Op_2, ..., Op_N, Reshape] | |
""" | |
ssa, _ = core.get_ssa(predict_net) | |
ret = [] | |
for i, op in enumerate(predict_net.op): | |
if op.type == "Reshape": | |
assert len(op.input) == 2 | |
input_ssa = ssa[i][0] | |
data_source = input_ssa[0] | |
shape_source = input_ssa[1] | |
op_indices = _get_dependency_chain(ssa, shape_source, data_source) | |
ret.append(op_indices + [i]) | |
return ret | |
def remove_reshape_for_fc(predict_net, params): | |
""" | |
In PyTorch nn.Linear has to take 2D tensor, this often leads to reshape | |
a 4D tensor to 2D by calling .view(). However this (dynamic) reshaping | |
doesn't work well with ONNX and Int8 tools, and cause using extra | |
ops (eg. ExpandDims) that might not be available on mobile. | |
Luckily Caffe2 supports 4D tensor for FC, so we can remove those reshape | |
after exporting ONNX model. | |
""" | |
from caffe2.python import core | |
# find all reshape sub-graph that can be removed, which is now all Reshape | |
# sub-graph whose output is only consumed by FC. | |
# TODO: to make it safer, we may need the actually value to better determine | |
# if a Reshape before FC is removable. | |
reshape_sub_graphs = identify_reshape_sub_graph(predict_net) | |
sub_graphs_to_remove = [] | |
for reshape_sub_graph in reshape_sub_graphs: | |
reshape_op_id = reshape_sub_graph[-1] | |
assert predict_net.op[reshape_op_id].type == "Reshape" | |
ssa, _ = core.get_ssa(predict_net) | |
reshape_output = ssa[reshape_op_id][1][0] | |
consumers = [i for i in range(len(ssa)) if reshape_output in ssa[i][0]] | |
if all(predict_net.op[consumer].type == "FC" for consumer in consumers): | |
# safety check if the sub-graph is isolated, for this reshape sub-graph, | |
# it means it has one non-param external input and one external output. | |
ext_inputs, ext_outputs = get_sub_graph_external_input_output( | |
predict_net, reshape_sub_graph | |
) | |
non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0] | |
if len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1: | |
sub_graphs_to_remove.append(reshape_sub_graph) | |
# perform removing subgraph by: | |
# 1: rename the Reshape's output to its input, then the graph can be | |
# seen as in-place itentify, meaning whose external input/output are the same. | |
# 2: simply remove those ops. | |
remove_op_ids = [] | |
params_to_remove = [] | |
for sub_graph in sub_graphs_to_remove: | |
logger.info( | |
"Remove Reshape sub-graph:\n{}".format( | |
"".join(["(#{:>4})\n{}".format(i, predict_net.op[i]) for i in sub_graph]) | |
) | |
) | |
reshape_op_id = sub_graph[-1] | |
new_reshap_output = predict_net.op[reshape_op_id].input[0] | |
rename_op_output(predict_net, reshape_op_id, 0, new_reshap_output) | |
ext_inputs, ext_outputs = get_sub_graph_external_input_output(predict_net, sub_graph) | |
non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0] | |
params_ext_inputs = [inp for inp in ext_inputs if inp[1] == 0] | |
assert len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1 | |
assert ext_outputs[0][0] == non_params_ext_inputs[0][0] | |
assert ext_outputs[0][1] == non_params_ext_inputs[0][1] + 1 | |
remove_op_ids.extend(sub_graph) | |
params_to_remove.extend(params_ext_inputs) | |
predict_net = copy.deepcopy(predict_net) | |
new_ops = [op for i, op in enumerate(predict_net.op) if i not in remove_op_ids] | |
del predict_net.op[:] | |
predict_net.op.extend(new_ops) | |
for versioned_params in params_to_remove: | |
name = versioned_params[0] | |
logger.info("Remove params: {} from init_net and predict_net.external_input".format(name)) | |
del params[name] | |
predict_net.external_input.remove(name) | |
return predict_net, params | |
def fuse_copy_between_cpu_and_gpu(predict_net: caffe2_pb2.NetDef): | |
""" | |
In-place fuse extra copy ops between cpu/gpu for the following case: | |
a -CopyAToB-> b -CopyBToA> c1 -NextOp1-> d1 | |
-CopyBToA> c2 -NextOp2-> d2 | |
The fused network will look like: | |
a -NextOp1-> d1 | |
-NextOp2-> d2 | |
""" | |
_COPY_OPS = ["CopyCPUToGPU", "CopyGPUToCPU"] | |
def _fuse_once(predict_net): | |
ssa, blob_versions = core.get_ssa(predict_net) | |
consumer_map = get_consumer_map(ssa) | |
versioned_external_output = [ | |
(name, blob_versions[name]) for name in predict_net.external_output | |
] | |
for op_id, op in enumerate(predict_net.op): | |
if op.type in _COPY_OPS: | |
fw_copy_versioned_output = ssa[op_id][1][0] | |
consumer_ids = [x[0] for x in consumer_map[fw_copy_versioned_output]] | |
reverse_op_type = _COPY_OPS[1 - _COPY_OPS.index(op.type)] | |
is_fusable = ( | |
len(consumer_ids) > 0 | |
and fw_copy_versioned_output not in versioned_external_output | |
and all( | |
predict_net.op[_op_id].type == reverse_op_type | |
and ssa[_op_id][1][0] not in versioned_external_output | |
for _op_id in consumer_ids | |
) | |
) | |
if is_fusable: | |
for rv_copy_op_id in consumer_ids: | |
# making each NextOp uses "a" directly and removing Copy ops | |
rs_copy_versioned_output = ssa[rv_copy_op_id][1][0] | |
next_op_id, inp_id = consumer_map[rs_copy_versioned_output][0] | |
predict_net.op[next_op_id].input[inp_id] = op.input[0] | |
# remove CopyOps | |
new_ops = [ | |
op | |
for i, op in enumerate(predict_net.op) | |
if i != op_id and i not in consumer_ids | |
] | |
del predict_net.op[:] | |
predict_net.op.extend(new_ops) | |
return True | |
return False | |
# _fuse_once returns False is nothing can be fused | |
while _fuse_once(predict_net): | |
pass | |
def remove_dead_end_ops(net_def: caffe2_pb2.NetDef): | |
"""remove ops if its output is not used or not in external_output""" | |
ssa, versions = core.get_ssa(net_def) | |
versioned_external_output = [(name, versions[name]) for name in net_def.external_output] | |
consumer_map = get_consumer_map(ssa) | |
removed_op_ids = set() | |
def _is_dead_end(versioned_blob): | |
return not ( | |
versioned_blob in versioned_external_output | |
or ( | |
len(consumer_map[versioned_blob]) > 0 | |
and all(x[0] not in removed_op_ids for x in consumer_map[versioned_blob]) | |
) | |
) | |
for i, ssa_i in reversed(list(enumerate(ssa))): | |
versioned_outputs = ssa_i[1] | |
if all(_is_dead_end(outp) for outp in versioned_outputs): | |
removed_op_ids.add(i) | |
# simply removing those deadend ops should have no effect to external_output | |
new_ops = [op for i, op in enumerate(net_def.op) if i not in removed_op_ids] | |
del net_def.op[:] | |
net_def.op.extend(new_ops) | |