Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from .backbone import Backbone | |
from .utils import ( | |
PatchEmbed, | |
add_decomposed_rel_pos, | |
get_abs_pos, | |
window_partition, | |
window_unpartition, | |
) | |
logger = logging.getLogger(__name__) | |
__all__ = ["MViT"] | |
def attention_pool(x, pool, norm=None): | |
# (B, H, W, C) -> (B, C, H, W) | |
x = x.permute(0, 3, 1, 2) | |
x = pool(x) | |
# (B, C, H1, W1) -> (B, H1, W1, C) | |
x = x.permute(0, 2, 3, 1) | |
if norm: | |
x = norm(x) | |
return x | |
class MultiScaleAttention(nn.Module): | |
"""Multiscale Multi-head Attention block.""" | |
def __init__( | |
self, | |
dim, | |
dim_out, | |
num_heads, | |
qkv_bias=True, | |
norm_layer=nn.LayerNorm, | |
pool_kernel=(3, 3), | |
stride_q=1, | |
stride_kv=1, | |
residual_pooling=True, | |
window_size=0, | |
use_rel_pos=False, | |
rel_pos_zero_init=True, | |
input_size=None, | |
): | |
""" | |
Args: | |
dim (int): Number of input channels. | |
dim_out (int): Number of output channels. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool: If True, add a learnable bias to query, key, value. | |
norm_layer (nn.Module): Normalization layer. | |
pool_kernel (tuple): kernel size for qkv pooling layers. | |
stride_q (int): stride size for q pooling layer. | |
stride_kv (int): stride size for kv pooling layer. | |
residual_pooling (bool): If true, enable residual pooling. | |
use_rel_pos (bool): If True, add relative postional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
input_size (int or None): Input resolution. | |
""" | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim_out // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias) | |
self.proj = nn.Linear(dim_out, dim_out) | |
# qkv pooling | |
pool_padding = [k // 2 for k in pool_kernel] | |
dim_conv = dim_out // num_heads | |
self.pool_q = nn.Conv2d( | |
dim_conv, | |
dim_conv, | |
pool_kernel, | |
stride=stride_q, | |
padding=pool_padding, | |
groups=dim_conv, | |
bias=False, | |
) | |
self.norm_q = norm_layer(dim_conv) | |
self.pool_k = nn.Conv2d( | |
dim_conv, | |
dim_conv, | |
pool_kernel, | |
stride=stride_kv, | |
padding=pool_padding, | |
groups=dim_conv, | |
bias=False, | |
) | |
self.norm_k = norm_layer(dim_conv) | |
self.pool_v = nn.Conv2d( | |
dim_conv, | |
dim_conv, | |
pool_kernel, | |
stride=stride_kv, | |
padding=pool_padding, | |
groups=dim_conv, | |
bias=False, | |
) | |
self.norm_v = norm_layer(dim_conv) | |
self.window_size = window_size | |
if window_size: | |
self.q_win_size = window_size // stride_q | |
self.kv_win_size = window_size // stride_kv | |
self.residual_pooling = residual_pooling | |
self.use_rel_pos = use_rel_pos | |
if self.use_rel_pos: | |
# initialize relative positional embeddings | |
assert input_size[0] == input_size[1] | |
size = input_size[0] | |
rel_dim = 2 * max(size // stride_q, size // stride_kv) - 1 | |
self.rel_pos_h = nn.Parameter(torch.zeros(rel_dim, head_dim)) | |
self.rel_pos_w = nn.Parameter(torch.zeros(rel_dim, head_dim)) | |
if not rel_pos_zero_init: | |
nn.init.trunc_normal_(self.rel_pos_h, std=0.02) | |
nn.init.trunc_normal_(self.rel_pos_w, std=0.02) | |
def forward(self, x): | |
B, H, W, _ = x.shape | |
# qkv with shape (3, B, nHead, H, W, C) | |
qkv = self.qkv(x).reshape(B, H, W, 3, self.num_heads, -1).permute(3, 0, 4, 1, 2, 5) | |
# q, k, v with shape (B * nHead, H, W, C) | |
q, k, v = qkv.reshape(3, B * self.num_heads, H, W, -1).unbind(0) | |
q = attention_pool(q, self.pool_q, self.norm_q) | |
k = attention_pool(k, self.pool_k, self.norm_k) | |
v = attention_pool(v, self.pool_v, self.norm_v) | |
ori_q = q | |
if self.window_size: | |
q, q_hw_pad = window_partition(q, self.q_win_size) | |
k, kv_hw_pad = window_partition(k, self.kv_win_size) | |
v, _ = window_partition(v, self.kv_win_size) | |
q_hw = (self.q_win_size, self.q_win_size) | |
kv_hw = (self.kv_win_size, self.kv_win_size) | |
else: | |
q_hw = q.shape[1:3] | |
kv_hw = k.shape[1:3] | |
q = q.view(q.shape[0], np.prod(q_hw), -1) | |
k = k.view(k.shape[0], np.prod(kv_hw), -1) | |
v = v.view(v.shape[0], np.prod(kv_hw), -1) | |
attn = (q * self.scale) @ k.transpose(-2, -1) | |
if self.use_rel_pos: | |
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, q_hw, kv_hw) | |
attn = attn.softmax(dim=-1) | |
x = attn @ v | |
x = x.view(x.shape[0], q_hw[0], q_hw[1], -1) | |
if self.window_size: | |
x = window_unpartition(x, self.q_win_size, q_hw_pad, ori_q.shape[1:3]) | |
if self.residual_pooling: | |
x += ori_q | |
H, W = x.shape[1], x.shape[2] | |
x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) | |
x = self.proj(x) | |
return x | |
class MultiScaleBlock(nn.Module): | |
"""Multiscale Transformer blocks""" | |
def __init__( | |
self, | |
dim, | |
dim_out, | |
num_heads, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
drop_path=0.0, | |
norm_layer=nn.LayerNorm, | |
act_layer=nn.GELU, | |
qkv_pool_kernel=(3, 3), | |
stride_q=1, | |
stride_kv=1, | |
residual_pooling=True, | |
window_size=0, | |
use_rel_pos=False, | |
rel_pos_zero_init=True, | |
input_size=None, | |
): | |
""" | |
Args: | |
dim (int): Number of input channels. | |
dim_out (int): Number of output channels. | |
num_heads (int): Number of attention heads in the MViT block. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
drop_path (float): Stochastic depth rate. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
qkv_pool_kernel (tuple): kernel size for qkv pooling layers. | |
stride_q (int): stride size for q pooling layer. | |
stride_kv (int): stride size for kv pooling layer. | |
residual_pooling (bool): If true, enable residual pooling. | |
window_size (int): Window size for window attention blocks. If it equals 0, then not | |
use window attention. | |
use_rel_pos (bool): If True, add relative postional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
input_size (int or None): Input resolution. | |
""" | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = MultiScaleAttention( | |
dim, | |
dim_out, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
norm_layer=norm_layer, | |
pool_kernel=qkv_pool_kernel, | |
stride_q=stride_q, | |
stride_kv=stride_kv, | |
residual_pooling=residual_pooling, | |
window_size=window_size, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
input_size=input_size, | |
) | |
from timm.models.layers import DropPath, Mlp | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim_out) | |
self.mlp = Mlp( | |
in_features=dim_out, | |
hidden_features=int(dim_out * mlp_ratio), | |
out_features=dim_out, | |
act_layer=act_layer, | |
) | |
if dim != dim_out: | |
self.proj = nn.Linear(dim, dim_out) | |
if stride_q > 1: | |
kernel_skip = stride_q + 1 | |
padding_skip = int(kernel_skip // 2) | |
self.pool_skip = nn.MaxPool2d(kernel_skip, stride_q, padding_skip, ceil_mode=False) | |
def forward(self, x): | |
x_norm = self.norm1(x) | |
x_block = self.attn(x_norm) | |
if hasattr(self, "proj"): | |
x = self.proj(x_norm) | |
if hasattr(self, "pool_skip"): | |
x = attention_pool(x, self.pool_skip) | |
x = x + self.drop_path(x_block) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class MViT(Backbone): | |
""" | |
This module implements Multiscale Vision Transformer (MViT) backbone in :paper:'mvitv2'. | |
""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_kernel=(7, 7), | |
patch_stride=(4, 4), | |
patch_padding=(3, 3), | |
in_chans=3, | |
embed_dim=96, | |
depth=16, | |
num_heads=1, | |
last_block_indexes=(0, 2, 11, 15), | |
qkv_pool_kernel=(3, 3), | |
adaptive_kv_stride=4, | |
adaptive_window_size=56, | |
residual_pooling=True, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
drop_path_rate=0.0, | |
norm_layer=nn.LayerNorm, | |
act_layer=nn.GELU, | |
use_abs_pos=False, | |
use_rel_pos=True, | |
rel_pos_zero_init=True, | |
use_act_checkpoint=False, | |
pretrain_img_size=224, | |
pretrain_use_cls_token=True, | |
out_features=("scale2", "scale3", "scale4", "scale5"), | |
): | |
""" | |
Args: | |
img_size (int): Input image size. | |
patch_kernel (tuple): kernel size for patch embedding. | |
patch_stride (tuple): stride size for patch embedding. | |
patch_padding (tuple): padding size for patch embedding. | |
in_chans (int): Number of input image channels. | |
embed_dim (int): Patch embedding dimension. | |
depth (int): Depth of MViT. | |
num_heads (int): Number of base attention heads in each MViT block. | |
last_block_indexes (tuple): Block indexes for last blocks in each stage. | |
qkv_pool_kernel (tuple): kernel size for qkv pooling layers. | |
adaptive_kv_stride (int): adaptive stride size for kv pooling. | |
adaptive_window_size (int): adaptive window size for window attention blocks. | |
residual_pooling (bool): If true, enable residual pooling. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
drop_path_rate (float): Stochastic depth rate. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
use_abs_pos (bool): If True, use absolute positional embeddings. | |
use_rel_pos (bool): If True, add relative postional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
window_size (int): Window size for window attention blocks. | |
use_act_checkpoint (bool): If True, use activation checkpointing. | |
pretrain_img_size (int): input image size for pretraining models. | |
pretrain_use_cls_token (bool): If True, pretrainig models use class token. | |
out_features (tuple): name of the feature maps from each stage. | |
""" | |
super().__init__() | |
self.pretrain_use_cls_token = pretrain_use_cls_token | |
self.patch_embed = PatchEmbed( | |
kernel_size=patch_kernel, | |
stride=patch_stride, | |
padding=patch_padding, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
) | |
if use_abs_pos: | |
# Initialize absoluate positional embedding with pretrain image size. | |
num_patches = (pretrain_img_size // patch_stride[0]) * ( | |
pretrain_img_size // patch_stride[1] | |
) | |
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim)) | |
else: | |
self.pos_embed = None | |
# stochastic depth decay rule | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] | |
dim_out = embed_dim | |
stride_kv = adaptive_kv_stride | |
window_size = adaptive_window_size | |
input_size = (img_size // patch_stride[0], img_size // patch_stride[1]) | |
stage = 2 | |
stride = patch_stride[0] | |
self._out_feature_strides = {} | |
self._out_feature_channels = {} | |
self.blocks = nn.ModuleList() | |
for i in range(depth): | |
# Multiply stride_kv by 2 if it's the last block of stage2 and stage3. | |
if i == last_block_indexes[1] or i == last_block_indexes[2]: | |
stride_kv_ = stride_kv * 2 | |
else: | |
stride_kv_ = stride_kv | |
# hybrid window attention: global attention in last three stages. | |
window_size_ = 0 if i in last_block_indexes[1:] else window_size | |
block = MultiScaleBlock( | |
dim=embed_dim, | |
dim_out=dim_out, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
qkv_pool_kernel=qkv_pool_kernel, | |
stride_q=2 if i - 1 in last_block_indexes else 1, | |
stride_kv=stride_kv_, | |
residual_pooling=residual_pooling, | |
window_size=window_size_, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
input_size=input_size, | |
) | |
if use_act_checkpoint: | |
# TODO: use torch.utils.checkpoint | |
from fairscale.nn.checkpoint import checkpoint_wrapper | |
block = checkpoint_wrapper(block) | |
self.blocks.append(block) | |
embed_dim = dim_out | |
if i in last_block_indexes: | |
name = f"scale{stage}" | |
if name in out_features: | |
self._out_feature_channels[name] = dim_out | |
self._out_feature_strides[name] = stride | |
self.add_module(f"{name}_norm", norm_layer(dim_out)) | |
dim_out *= 2 | |
num_heads *= 2 | |
stride_kv = max(stride_kv // 2, 1) | |
stride *= 2 | |
stage += 1 | |
if i - 1 in last_block_indexes: | |
window_size = window_size // 2 | |
input_size = [s // 2 for s in input_size] | |
self._out_features = out_features | |
self._last_block_indexes = last_block_indexes | |
if self.pos_embed is not None: | |
nn.init.trunc_normal_(self.pos_embed, std=0.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x): | |
x = self.patch_embed(x) | |
if self.pos_embed is not None: | |
x = x + get_abs_pos(self.pos_embed, self.pretrain_use_cls_token, x.shape[1:3]) | |
outputs = {} | |
stage = 2 | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if i in self._last_block_indexes: | |
name = f"scale{stage}" | |
if name in self._out_features: | |
x_out = getattr(self, f"{name}_norm")(x) | |
outputs[name] = x_out.permute(0, 3, 1, 2) | |
stage += 1 | |
return outputs | |