Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
from dataclasses import make_dataclass | |
from functools import lru_cache | |
from typing import Any, Optional | |
import torch | |
def decorate_predictor_output_class_with_confidences(BasePredictorOutput: type) -> type: | |
""" | |
Create a new output class from an existing one by adding new attributes | |
related to confidence estimation: | |
- sigma_1 (tensor) | |
- sigma_2 (tensor) | |
- kappa_u (tensor) | |
- kappa_v (tensor) | |
- fine_segm_confidence (tensor) | |
- coarse_segm_confidence (tensor) | |
Details on confidence estimation parameters can be found in: | |
N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning | |
Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019 | |
A. Sanakoyeu et al., Transferring Dense Pose to Proximal Animal Classes, CVPR 2020 | |
The new class inherits the provided `BasePredictorOutput` class, | |
it's name is composed of the name of the provided class and | |
"WithConfidences" suffix. | |
Args: | |
BasePredictorOutput (type): output type to which confidence data | |
is to be added, assumed to be a dataclass | |
Return: | |
New dataclass derived from the provided one that has attributes | |
for confidence estimation | |
""" | |
PredictorOutput = make_dataclass( | |
BasePredictorOutput.__name__ + "WithConfidences", | |
fields=[ | |
("sigma_1", Optional[torch.Tensor], None), | |
("sigma_2", Optional[torch.Tensor], None), | |
("kappa_u", Optional[torch.Tensor], None), | |
("kappa_v", Optional[torch.Tensor], None), | |
("fine_segm_confidence", Optional[torch.Tensor], None), | |
("coarse_segm_confidence", Optional[torch.Tensor], None), | |
], | |
bases=(BasePredictorOutput,), | |
) | |
# add possibility to index PredictorOutput | |
def slice_if_not_none(data, item): | |
if data is None: | |
return None | |
if isinstance(item, int): | |
return data[item].unsqueeze(0) | |
return data[item] | |
def PredictorOutput_getitem(self, item): | |
PredictorOutput = type(self) | |
base_predictor_output_sliced = super(PredictorOutput, self).__getitem__(item) | |
return PredictorOutput( | |
**base_predictor_output_sliced.__dict__, | |
coarse_segm_confidence=slice_if_not_none(self.coarse_segm_confidence, item), | |
fine_segm_confidence=slice_if_not_none(self.fine_segm_confidence, item), | |
sigma_1=slice_if_not_none(self.sigma_1, item), | |
sigma_2=slice_if_not_none(self.sigma_2, item), | |
kappa_u=slice_if_not_none(self.kappa_u, item), | |
kappa_v=slice_if_not_none(self.kappa_v, item), | |
) | |
PredictorOutput.__getitem__ = PredictorOutput_getitem | |
def PredictorOutput_to(self, device: torch.device): | |
""" | |
Transfers all tensors to the given device | |
""" | |
PredictorOutput = type(self) | |
base_predictor_output_to = super(PredictorOutput, self).to(device) # pyre-ignore[16] | |
def to_device_if_tensor(var: Any): | |
if isinstance(var, torch.Tensor): | |
return var.to(device) | |
return var | |
return PredictorOutput( | |
**base_predictor_output_to.__dict__, | |
sigma_1=to_device_if_tensor(self.sigma_1), | |
sigma_2=to_device_if_tensor(self.sigma_2), | |
kappa_u=to_device_if_tensor(self.kappa_u), | |
kappa_v=to_device_if_tensor(self.kappa_v), | |
fine_segm_confidence=to_device_if_tensor(self.fine_segm_confidence), | |
coarse_segm_confidence=to_device_if_tensor(self.coarse_segm_confidence), | |
) | |
PredictorOutput.to = PredictorOutput_to | |
return PredictorOutput | |