Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import math | |
from typing import Dict | |
import torch | |
import torch.nn.functional as F | |
from detectron2.layers import ShapeSpec, cat | |
from detectron2.layers.roi_align_rotated import ROIAlignRotated | |
from detectron2.modeling import poolers | |
from detectron2.modeling.proposal_generator import rpn | |
from detectron2.modeling.roi_heads.mask_head import mask_rcnn_inference | |
from detectron2.structures import Boxes, ImageList, Instances, Keypoints, RotatedBoxes | |
from .shared import alias, to_device | |
""" | |
This file contains caffe2-compatible implementation of several detectron2 components. | |
""" | |
class Caffe2Boxes(Boxes): | |
""" | |
Representing a list of detectron2.structures.Boxes from minibatch, each box | |
is represented by a 5d vector (batch index + 4 coordinates), or a 6d vector | |
(batch index + 5 coordinates) for RotatedBoxes. | |
""" | |
def __init__(self, tensor): | |
assert isinstance(tensor, torch.Tensor) | |
assert tensor.dim() == 2 and tensor.size(-1) in [4, 5, 6], tensor.size() | |
# TODO: make tensor immutable when dim is Nx5 for Boxes, | |
# and Nx6 for RotatedBoxes? | |
self.tensor = tensor | |
# TODO clean up this class, maybe just extend Instances | |
class InstancesList: | |
""" | |
Tensor representation of a list of Instances object for a batch of images. | |
When dealing with a batch of images with Caffe2 ops, a list of bboxes | |
(instances) are usually represented by single Tensor with size | |
(sigma(Ni), 5) or (sigma(Ni), 4) plus a batch split Tensor. This class is | |
for providing common functions to convert between these two representations. | |
""" | |
def __init__(self, im_info, indices, extra_fields=None): | |
# [N, 3] -> (H, W, Scale) | |
self.im_info = im_info | |
# [N,] -> indice of batch to which the instance belongs | |
self.indices = indices | |
# [N, ...] | |
self.batch_extra_fields = extra_fields or {} | |
self.image_size = self.im_info | |
def get_fields(self): | |
"""like `get_fields` in the Instances object, | |
but return each field in tensor representations""" | |
ret = {} | |
for k, v in self.batch_extra_fields.items(): | |
# if isinstance(v, torch.Tensor): | |
# tensor_rep = v | |
# elif isinstance(v, (Boxes, Keypoints)): | |
# tensor_rep = v.tensor | |
# else: | |
# raise ValueError("Can't find tensor representation for: {}".format()) | |
ret[k] = v | |
return ret | |
def has(self, name): | |
return name in self.batch_extra_fields | |
def set(self, name, value): | |
# len(tensor) is a bad practice that generates ONNX constants during tracing. | |
# Although not a problem for the `assert` statement below, torch ONNX exporter | |
# still raises a misleading warning as it does not this call comes from `assert` | |
if isinstance(value, Boxes): | |
data_len = value.tensor.shape[0] | |
elif isinstance(value, torch.Tensor): | |
data_len = value.shape[0] | |
else: | |
data_len = len(value) | |
if len(self.batch_extra_fields): | |
assert ( | |
len(self) == data_len | |
), "Adding a field of length {} to a Instances of length {}".format(data_len, len(self)) | |
self.batch_extra_fields[name] = value | |
def __getattr__(self, name): | |
if name not in self.batch_extra_fields: | |
raise AttributeError("Cannot find field '{}' in the given Instances!".format(name)) | |
return self.batch_extra_fields[name] | |
def __len__(self): | |
return len(self.indices) | |
def flatten(self): | |
ret = [] | |
for _, v in self.batch_extra_fields.items(): | |
if isinstance(v, (Boxes, Keypoints)): | |
ret.append(v.tensor) | |
else: | |
ret.append(v) | |
return ret | |
def to_d2_instances_list(instances_list): | |
""" | |
Convert InstancesList to List[Instances]. The input `instances_list` can | |
also be a List[Instances], in this case this method is a non-op. | |
""" | |
if not isinstance(instances_list, InstancesList): | |
assert all(isinstance(x, Instances) for x in instances_list) | |
return instances_list | |
ret = [] | |
for i, info in enumerate(instances_list.im_info): | |
instances = Instances(torch.Size([int(info[0].item()), int(info[1].item())])) | |
ids = instances_list.indices == i | |
for k, v in instances_list.batch_extra_fields.items(): | |
if isinstance(v, torch.Tensor): | |
instances.set(k, v[ids]) | |
continue | |
elif isinstance(v, Boxes): | |
instances.set(k, v[ids, -4:]) | |
continue | |
target_type, tensor_source = v | |
assert isinstance(tensor_source, torch.Tensor) | |
assert tensor_source.shape[0] == instances_list.indices.shape[0] | |
tensor_source = tensor_source[ids] | |
if issubclass(target_type, Boxes): | |
instances.set(k, Boxes(tensor_source[:, -4:])) | |
elif issubclass(target_type, Keypoints): | |
instances.set(k, Keypoints(tensor_source)) | |
elif issubclass(target_type, torch.Tensor): | |
instances.set(k, tensor_source) | |
else: | |
raise ValueError("Can't handle targe type: {}".format(target_type)) | |
ret.append(instances) | |
return ret | |
class Caffe2Compatible: | |
""" | |
A model can inherit this class to indicate that it can be traced and deployed with caffe2. | |
""" | |
def _get_tensor_mode(self): | |
return self._tensor_mode | |
def _set_tensor_mode(self, v): | |
self._tensor_mode = v | |
tensor_mode = property(_get_tensor_mode, _set_tensor_mode) | |
""" | |
If true, the model expects C2-style tensor only inputs/outputs format. | |
""" | |
class Caffe2RPN(Caffe2Compatible, rpn.RPN): | |
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): | |
ret = super(Caffe2Compatible, cls).from_config(cfg, input_shape) | |
assert tuple(cfg.MODEL.RPN.BBOX_REG_WEIGHTS) == (1.0, 1.0, 1.0, 1.0) or tuple( | |
cfg.MODEL.RPN.BBOX_REG_WEIGHTS | |
) == (1.0, 1.0, 1.0, 1.0, 1.0) | |
return ret | |
def _generate_proposals( | |
self, images, objectness_logits_pred, anchor_deltas_pred, gt_instances=None | |
): | |
assert isinstance(images, ImageList) | |
if self.tensor_mode: | |
im_info = images.image_sizes | |
else: | |
im_info = torch.tensor([[im_sz[0], im_sz[1], 1.0] for im_sz in images.image_sizes]).to( | |
images.tensor.device | |
) | |
assert isinstance(im_info, torch.Tensor) | |
rpn_rois_list = [] | |
rpn_roi_probs_list = [] | |
for scores, bbox_deltas, cell_anchors_tensor, feat_stride in zip( | |
objectness_logits_pred, | |
anchor_deltas_pred, | |
[b for (n, b) in self.anchor_generator.cell_anchors.named_buffers()], | |
self.anchor_generator.strides, | |
): | |
scores = scores.detach() | |
bbox_deltas = bbox_deltas.detach() | |
rpn_rois, rpn_roi_probs = torch.ops._caffe2.GenerateProposals( | |
scores, | |
bbox_deltas, | |
im_info, | |
cell_anchors_tensor, | |
spatial_scale=1.0 / feat_stride, | |
pre_nms_topN=self.pre_nms_topk[self.training], | |
post_nms_topN=self.post_nms_topk[self.training], | |
nms_thresh=self.nms_thresh, | |
min_size=self.min_box_size, | |
# correct_transform_coords=True, # deprecated argument | |
angle_bound_on=True, # Default | |
angle_bound_lo=-180, | |
angle_bound_hi=180, | |
clip_angle_thresh=1.0, # Default | |
legacy_plus_one=False, | |
) | |
rpn_rois_list.append(rpn_rois) | |
rpn_roi_probs_list.append(rpn_roi_probs) | |
# For FPN in D2, in RPN all proposals from different levels are concated | |
# together, ranked and picked by top post_nms_topk. Then in ROIPooler | |
# it calculates level_assignments and calls the RoIAlign from | |
# the corresponding level. | |
if len(objectness_logits_pred) == 1: | |
rpn_rois = rpn_rois_list[0] | |
rpn_roi_probs = rpn_roi_probs_list[0] | |
else: | |
assert len(rpn_rois_list) == len(rpn_roi_probs_list) | |
rpn_post_nms_topN = self.post_nms_topk[self.training] | |
device = rpn_rois_list[0].device | |
input_list = [to_device(x, "cpu") for x in (rpn_rois_list + rpn_roi_probs_list)] | |
# TODO remove this after confirming rpn_max_level/rpn_min_level | |
# is not needed in CollectRpnProposals. | |
feature_strides = list(self.anchor_generator.strides) | |
rpn_min_level = int(math.log2(feature_strides[0])) | |
rpn_max_level = int(math.log2(feature_strides[-1])) | |
assert (rpn_max_level - rpn_min_level + 1) == len( | |
rpn_rois_list | |
), "CollectRpnProposals requires continuous levels" | |
rpn_rois = torch.ops._caffe2.CollectRpnProposals( | |
input_list, | |
# NOTE: in current implementation, rpn_max_level and rpn_min_level | |
# are not needed, only the subtraction of two matters and it | |
# can be infer from the number of inputs. Keep them now for | |
# consistency. | |
rpn_max_level=2 + len(rpn_rois_list) - 1, | |
rpn_min_level=2, | |
rpn_post_nms_topN=rpn_post_nms_topN, | |
) | |
rpn_rois = to_device(rpn_rois, device) | |
rpn_roi_probs = [] | |
proposals = self.c2_postprocess(im_info, rpn_rois, rpn_roi_probs, self.tensor_mode) | |
return proposals, {} | |
def forward(self, images, features, gt_instances=None): | |
assert not self.training | |
features = [features[f] for f in self.in_features] | |
objectness_logits_pred, anchor_deltas_pred = self.rpn_head(features) | |
return self._generate_proposals( | |
images, | |
objectness_logits_pred, | |
anchor_deltas_pred, | |
gt_instances, | |
) | |
def c2_postprocess(im_info, rpn_rois, rpn_roi_probs, tensor_mode): | |
proposals = InstancesList( | |
im_info=im_info, | |
indices=rpn_rois[:, 0], | |
extra_fields={ | |
"proposal_boxes": Caffe2Boxes(rpn_rois), | |
"objectness_logits": (torch.Tensor, rpn_roi_probs), | |
}, | |
) | |
if not tensor_mode: | |
proposals = InstancesList.to_d2_instances_list(proposals) | |
else: | |
proposals = [proposals] | |
return proposals | |
class Caffe2ROIPooler(Caffe2Compatible, poolers.ROIPooler): | |
def c2_preprocess(box_lists): | |
assert all(isinstance(x, Boxes) for x in box_lists) | |
if all(isinstance(x, Caffe2Boxes) for x in box_lists): | |
# input is pure-tensor based | |
assert len(box_lists) == 1 | |
pooler_fmt_boxes = box_lists[0].tensor | |
else: | |
pooler_fmt_boxes = poolers.convert_boxes_to_pooler_format(box_lists) | |
return pooler_fmt_boxes | |
def forward(self, x, box_lists): | |
assert not self.training | |
pooler_fmt_boxes = self.c2_preprocess(box_lists) | |
num_level_assignments = len(self.level_poolers) | |
if num_level_assignments == 1: | |
if isinstance(self.level_poolers[0], ROIAlignRotated): | |
c2_roi_align = torch.ops._caffe2.RoIAlignRotated | |
aligned = True | |
else: | |
c2_roi_align = torch.ops._caffe2.RoIAlign | |
aligned = self.level_poolers[0].aligned | |
x0 = x[0] | |
if x0.is_quantized: | |
x0 = x0.dequantize() | |
out = c2_roi_align( | |
x0, | |
pooler_fmt_boxes, | |
order="NCHW", | |
spatial_scale=float(self.level_poolers[0].spatial_scale), | |
pooled_h=int(self.output_size[0]), | |
pooled_w=int(self.output_size[1]), | |
sampling_ratio=int(self.level_poolers[0].sampling_ratio), | |
aligned=aligned, | |
) | |
return out | |
device = pooler_fmt_boxes.device | |
assert ( | |
self.max_level - self.min_level + 1 == 4 | |
), "Currently DistributeFpnProposals only support 4 levels" | |
fpn_outputs = torch.ops._caffe2.DistributeFpnProposals( | |
to_device(pooler_fmt_boxes, "cpu"), | |
roi_canonical_scale=self.canonical_box_size, | |
roi_canonical_level=self.canonical_level, | |
roi_max_level=self.max_level, | |
roi_min_level=self.min_level, | |
legacy_plus_one=False, | |
) | |
fpn_outputs = [to_device(x, device) for x in fpn_outputs] | |
rois_fpn_list = fpn_outputs[:-1] | |
rois_idx_restore_int32 = fpn_outputs[-1] | |
roi_feat_fpn_list = [] | |
for roi_fpn, x_level, pooler in zip(rois_fpn_list, x, self.level_poolers): | |
if isinstance(pooler, ROIAlignRotated): | |
c2_roi_align = torch.ops._caffe2.RoIAlignRotated | |
aligned = True | |
else: | |
c2_roi_align = torch.ops._caffe2.RoIAlign | |
aligned = bool(pooler.aligned) | |
if x_level.is_quantized: | |
x_level = x_level.dequantize() | |
roi_feat_fpn = c2_roi_align( | |
x_level, | |
roi_fpn, | |
order="NCHW", | |
spatial_scale=float(pooler.spatial_scale), | |
pooled_h=int(self.output_size[0]), | |
pooled_w=int(self.output_size[1]), | |
sampling_ratio=int(pooler.sampling_ratio), | |
aligned=aligned, | |
) | |
roi_feat_fpn_list.append(roi_feat_fpn) | |
roi_feat_shuffled = cat(roi_feat_fpn_list, dim=0) | |
assert roi_feat_shuffled.numel() > 0 and rois_idx_restore_int32.numel() > 0, ( | |
"Caffe2 export requires tracing with a model checkpoint + input that can produce valid" | |
" detections. But no detections were obtained with the given checkpoint and input!" | |
) | |
roi_feat = torch.ops._caffe2.BatchPermutation(roi_feat_shuffled, rois_idx_restore_int32) | |
return roi_feat | |
def caffe2_fast_rcnn_outputs_inference(tensor_mode, box_predictor, predictions, proposals): | |
"""equivalent to FastRCNNOutputLayers.inference""" | |
num_classes = box_predictor.num_classes | |
score_thresh = box_predictor.test_score_thresh | |
nms_thresh = box_predictor.test_nms_thresh | |
topk_per_image = box_predictor.test_topk_per_image | |
is_rotated = len(box_predictor.box2box_transform.weights) == 5 | |
if is_rotated: | |
box_dim = 5 | |
assert box_predictor.box2box_transform.weights[4] == 1, ( | |
"The weights for Rotated BBoxTransform in C2 have only 4 dimensions," | |
+ " thus enforcing the angle weight to be 1 for now" | |
) | |
box2box_transform_weights = box_predictor.box2box_transform.weights[:4] | |
else: | |
box_dim = 4 | |
box2box_transform_weights = box_predictor.box2box_transform.weights | |
class_logits, box_regression = predictions | |
if num_classes + 1 == class_logits.shape[1]: | |
class_prob = F.softmax(class_logits, -1) | |
else: | |
assert num_classes == class_logits.shape[1] | |
class_prob = F.sigmoid(class_logits) | |
# BoxWithNMSLimit will infer num_classes from the shape of the class_prob | |
# So append a zero column as placeholder for the background class | |
class_prob = torch.cat((class_prob, torch.zeros(class_prob.shape[0], 1)), dim=1) | |
assert box_regression.shape[1] % box_dim == 0 | |
cls_agnostic_bbox_reg = box_regression.shape[1] // box_dim == 1 | |
input_tensor_mode = proposals[0].proposal_boxes.tensor.shape[1] == box_dim + 1 | |
proposal_boxes = proposals[0].proposal_boxes | |
if isinstance(proposal_boxes, Caffe2Boxes): | |
rois = Caffe2Boxes.cat([p.proposal_boxes for p in proposals]) | |
elif isinstance(proposal_boxes, RotatedBoxes): | |
rois = RotatedBoxes.cat([p.proposal_boxes for p in proposals]) | |
elif isinstance(proposal_boxes, Boxes): | |
rois = Boxes.cat([p.proposal_boxes for p in proposals]) | |
else: | |
raise NotImplementedError( | |
'Expected proposals[0].proposal_boxes to be type "Boxes", ' | |
f"instead got {type(proposal_boxes)}" | |
) | |
device, dtype = rois.tensor.device, rois.tensor.dtype | |
if input_tensor_mode: | |
im_info = proposals[0].image_size | |
rois = rois.tensor | |
else: | |
im_info = torch.tensor([[sz[0], sz[1], 1.0] for sz in [x.image_size for x in proposals]]) | |
batch_ids = cat( | |
[ | |
torch.full((b, 1), i, dtype=dtype, device=device) | |
for i, b in enumerate(len(p) for p in proposals) | |
], | |
dim=0, | |
) | |
rois = torch.cat([batch_ids, rois.tensor], dim=1) | |
roi_pred_bbox, roi_batch_splits = torch.ops._caffe2.BBoxTransform( | |
to_device(rois, "cpu"), | |
to_device(box_regression, "cpu"), | |
to_device(im_info, "cpu"), | |
weights=box2box_transform_weights, | |
apply_scale=True, | |
rotated=is_rotated, | |
angle_bound_on=True, | |
angle_bound_lo=-180, | |
angle_bound_hi=180, | |
clip_angle_thresh=1.0, | |
legacy_plus_one=False, | |
) | |
roi_pred_bbox = to_device(roi_pred_bbox, device) | |
roi_batch_splits = to_device(roi_batch_splits, device) | |
nms_outputs = torch.ops._caffe2.BoxWithNMSLimit( | |
to_device(class_prob, "cpu"), | |
to_device(roi_pred_bbox, "cpu"), | |
to_device(roi_batch_splits, "cpu"), | |
score_thresh=float(score_thresh), | |
nms=float(nms_thresh), | |
detections_per_im=int(topk_per_image), | |
soft_nms_enabled=False, | |
soft_nms_method="linear", | |
soft_nms_sigma=0.5, | |
soft_nms_min_score_thres=0.001, | |
rotated=is_rotated, | |
cls_agnostic_bbox_reg=cls_agnostic_bbox_reg, | |
input_boxes_include_bg_cls=False, | |
output_classes_include_bg_cls=False, | |
legacy_plus_one=False, | |
) | |
roi_score_nms = to_device(nms_outputs[0], device) | |
roi_bbox_nms = to_device(nms_outputs[1], device) | |
roi_class_nms = to_device(nms_outputs[2], device) | |
roi_batch_splits_nms = to_device(nms_outputs[3], device) | |
roi_keeps_nms = to_device(nms_outputs[4], device) | |
roi_keeps_size_nms = to_device(nms_outputs[5], device) | |
if not tensor_mode: | |
roi_class_nms = roi_class_nms.to(torch.int64) | |
roi_batch_ids = cat( | |
[ | |
torch.full((b, 1), i, dtype=dtype, device=device) | |
for i, b in enumerate(int(x.item()) for x in roi_batch_splits_nms) | |
], | |
dim=0, | |
) | |
roi_class_nms = alias(roi_class_nms, "class_nms") | |
roi_score_nms = alias(roi_score_nms, "score_nms") | |
roi_bbox_nms = alias(roi_bbox_nms, "bbox_nms") | |
roi_batch_splits_nms = alias(roi_batch_splits_nms, "batch_splits_nms") | |
roi_keeps_nms = alias(roi_keeps_nms, "keeps_nms") | |
roi_keeps_size_nms = alias(roi_keeps_size_nms, "keeps_size_nms") | |
results = InstancesList( | |
im_info=im_info, | |
indices=roi_batch_ids[:, 0], | |
extra_fields={ | |
"pred_boxes": Caffe2Boxes(roi_bbox_nms), | |
"scores": roi_score_nms, | |
"pred_classes": roi_class_nms, | |
}, | |
) | |
if not tensor_mode: | |
results = InstancesList.to_d2_instances_list(results) | |
batch_splits = roi_batch_splits_nms.int().tolist() | |
kept_indices = list(roi_keeps_nms.to(torch.int64).split(batch_splits)) | |
else: | |
results = [results] | |
kept_indices = [roi_keeps_nms] | |
return results, kept_indices | |
class Caffe2FastRCNNOutputsInference: | |
def __init__(self, tensor_mode): | |
self.tensor_mode = tensor_mode # whether the output is caffe2 tensor mode | |
def __call__(self, box_predictor, predictions, proposals): | |
return caffe2_fast_rcnn_outputs_inference( | |
self.tensor_mode, box_predictor, predictions, proposals | |
) | |
def caffe2_mask_rcnn_inference(pred_mask_logits, pred_instances): | |
"""equivalent to mask_head.mask_rcnn_inference""" | |
if all(isinstance(x, InstancesList) for x in pred_instances): | |
assert len(pred_instances) == 1 | |
mask_probs_pred = pred_mask_logits.sigmoid() | |
mask_probs_pred = alias(mask_probs_pred, "mask_fcn_probs") | |
pred_instances[0].set("pred_masks", mask_probs_pred) | |
else: | |
mask_rcnn_inference(pred_mask_logits, pred_instances) | |
class Caffe2MaskRCNNInference: | |
def __call__(self, pred_mask_logits, pred_instances): | |
return caffe2_mask_rcnn_inference(pred_mask_logits, pred_instances) | |
def caffe2_keypoint_rcnn_inference(use_heatmap_max_keypoint, pred_keypoint_logits, pred_instances): | |
# just return the keypoint heatmap for now, | |
# there will be option to call HeatmapMaxKeypointOp | |
output = alias(pred_keypoint_logits, "kps_score") | |
if all(isinstance(x, InstancesList) for x in pred_instances): | |
assert len(pred_instances) == 1 | |
if use_heatmap_max_keypoint: | |
device = output.device | |
output = torch.ops._caffe2.HeatmapMaxKeypoint( | |
to_device(output, "cpu"), | |
pred_instances[0].pred_boxes.tensor, | |
should_output_softmax=True, # worth make it configerable? | |
) | |
output = to_device(output, device) | |
output = alias(output, "keypoints_out") | |
pred_instances[0].set("pred_keypoints", output) | |
return pred_keypoint_logits | |
class Caffe2KeypointRCNNInference: | |
def __init__(self, use_heatmap_max_keypoint): | |
self.use_heatmap_max_keypoint = use_heatmap_max_keypoint | |
def __call__(self, pred_keypoint_logits, pred_instances): | |
return caffe2_keypoint_rcnn_inference( | |
self.use_heatmap_max_keypoint, pred_keypoint_logits, pred_instances | |
) | |