Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
from typing import Any, Dict, List, Tuple | |
import torch | |
from torch.nn import functional as F | |
from detectron2.structures import BoxMode, Instances | |
from densepose.converters import ToChartResultConverter | |
from densepose.converters.base import IntTupleBox, make_int_box | |
from densepose.structures import DensePoseDataRelative, DensePoseList | |
class DensePoseBaseSampler: | |
""" | |
Base DensePose sampler to produce DensePose data from DensePose predictions. | |
Samples for each class are drawn according to some distribution over all pixels estimated | |
to belong to that class. | |
""" | |
def __init__(self, count_per_class: int = 8): | |
""" | |
Constructor | |
Args: | |
count_per_class (int): the sampler produces at most `count_per_class` | |
samples for each category | |
""" | |
self.count_per_class = count_per_class | |
def __call__(self, instances: Instances) -> DensePoseList: | |
""" | |
Convert DensePose predictions (an instance of `DensePoseChartPredictorOutput`) | |
into DensePose annotations data (an instance of `DensePoseList`) | |
""" | |
boxes_xyxy_abs = instances.pred_boxes.tensor.clone().cpu() | |
boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) | |
dp_datas = [] | |
for i in range(len(boxes_xywh_abs)): | |
annotation_i = self._sample(instances[i], make_int_box(boxes_xywh_abs[i])) | |
annotation_i[DensePoseDataRelative.S_KEY] = self._resample_mask( # pyre-ignore[6] | |
instances[i].pred_densepose | |
) | |
dp_datas.append(DensePoseDataRelative(annotation_i)) | |
# create densepose annotations on CPU | |
dp_list = DensePoseList(dp_datas, boxes_xyxy_abs, instances.image_size) | |
return dp_list | |
def _sample(self, instance: Instances, bbox_xywh: IntTupleBox) -> Dict[str, List[Any]]: | |
""" | |
Sample DensPoseDataRelative from estimation results | |
""" | |
labels, dp_result = self._produce_labels_and_results(instance) | |
annotation = { | |
DensePoseDataRelative.X_KEY: [], | |
DensePoseDataRelative.Y_KEY: [], | |
DensePoseDataRelative.U_KEY: [], | |
DensePoseDataRelative.V_KEY: [], | |
DensePoseDataRelative.I_KEY: [], | |
} | |
n, h, w = dp_result.shape | |
for part_id in range(1, DensePoseDataRelative.N_PART_LABELS + 1): | |
# indices - tuple of 3 1D tensors of size k | |
# 0: index along the first dimension N | |
# 1: index along H dimension | |
# 2: index along W dimension | |
indices = torch.nonzero(labels.expand(n, h, w) == part_id, as_tuple=True) | |
# values - an array of size [n, k] | |
# n: number of channels (U, V, confidences) | |
# k: number of points labeled with part_id | |
values = dp_result[indices].view(n, -1) | |
k = values.shape[1] | |
count = min(self.count_per_class, k) | |
if count <= 0: | |
continue | |
index_sample = self._produce_index_sample(values, count) | |
sampled_values = values[:, index_sample] | |
sampled_y = indices[1][index_sample] + 0.5 | |
sampled_x = indices[2][index_sample] + 0.5 | |
# prepare / normalize data | |
x = (sampled_x / w * 256.0).cpu().tolist() | |
y = (sampled_y / h * 256.0).cpu().tolist() | |
u = sampled_values[0].clamp(0, 1).cpu().tolist() | |
v = sampled_values[1].clamp(0, 1).cpu().tolist() | |
fine_segm_labels = [part_id] * count | |
# extend annotations | |
annotation[DensePoseDataRelative.X_KEY].extend(x) | |
annotation[DensePoseDataRelative.Y_KEY].extend(y) | |
annotation[DensePoseDataRelative.U_KEY].extend(u) | |
annotation[DensePoseDataRelative.V_KEY].extend(v) | |
annotation[DensePoseDataRelative.I_KEY].extend(fine_segm_labels) | |
return annotation | |
def _produce_index_sample(self, values: torch.Tensor, count: int): | |
""" | |
Abstract method to produce a sample of indices to select data | |
To be implemented in descendants | |
Args: | |
values (torch.Tensor): an array of size [n, k] that contains | |
estimated values (U, V, confidences); | |
n: number of channels (U, V, confidences) | |
k: number of points labeled with part_id | |
count (int): number of samples to produce, should be positive and <= k | |
Return: | |
list(int): indices of values (along axis 1) selected as a sample | |
""" | |
raise NotImplementedError | |
def _produce_labels_and_results(self, instance: Instances) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Method to get labels and DensePose results from an instance | |
Args: | |
instance (Instances): an instance of `DensePoseChartPredictorOutput` | |
Return: | |
labels (torch.Tensor): shape [H, W], DensePose segmentation labels | |
dp_result (torch.Tensor): shape [2, H, W], stacked DensePose results u and v | |
""" | |
converter = ToChartResultConverter | |
chart_result = converter.convert(instance.pred_densepose, instance.pred_boxes) | |
labels, dp_result = chart_result.labels.cpu(), chart_result.uv.cpu() | |
return labels, dp_result | |
def _resample_mask(self, output: Any) -> torch.Tensor: | |
""" | |
Convert DensePose predictor output to segmentation annotation - tensors of size | |
(256, 256) and type `int64`. | |
Args: | |
output: DensePose predictor output with the following attributes: | |
- coarse_segm: tensor of size [N, D, H, W] with unnormalized coarse | |
segmentation scores | |
- fine_segm: tensor of size [N, C, H, W] with unnormalized fine | |
segmentation scores | |
Return: | |
Tensor of size (S, S) and type `int64` with coarse segmentation annotations, | |
where S = DensePoseDataRelative.MASK_SIZE | |
""" | |
sz = DensePoseDataRelative.MASK_SIZE | |
S = ( | |
F.interpolate(output.coarse_segm, (sz, sz), mode="bilinear", align_corners=False) | |
.argmax(dim=1) | |
.long() | |
) | |
I = ( | |
( | |
F.interpolate( | |
output.fine_segm, | |
(sz, sz), | |
mode="bilinear", | |
align_corners=False, | |
).argmax(dim=1) | |
* (S > 0).long() | |
) | |
.squeeze() | |
.cpu() | |
) | |
# Map fine segmentation results to coarse segmentation ground truth | |
# TODO: extract this into separate classes | |
# coarse segmentation: 1 = Torso, 2 = Right Hand, 3 = Left Hand, | |
# 4 = Left Foot, 5 = Right Foot, 6 = Upper Leg Right, 7 = Upper Leg Left, | |
# 8 = Lower Leg Right, 9 = Lower Leg Left, 10 = Upper Arm Left, | |
# 11 = Upper Arm Right, 12 = Lower Arm Left, 13 = Lower Arm Right, | |
# 14 = Head | |
# fine segmentation: 1, 2 = Torso, 3 = Right Hand, 4 = Left Hand, | |
# 5 = Left Foot, 6 = Right Foot, 7, 9 = Upper Leg Right, | |
# 8, 10 = Upper Leg Left, 11, 13 = Lower Leg Right, | |
# 12, 14 = Lower Leg Left, 15, 17 = Upper Arm Left, | |
# 16, 18 = Upper Arm Right, 19, 21 = Lower Arm Left, | |
# 20, 22 = Lower Arm Right, 23, 24 = Head | |
FINE_TO_COARSE_SEGMENTATION = { | |
1: 1, | |
2: 1, | |
3: 2, | |
4: 3, | |
5: 4, | |
6: 5, | |
7: 6, | |
8: 7, | |
9: 6, | |
10: 7, | |
11: 8, | |
12: 9, | |
13: 8, | |
14: 9, | |
15: 10, | |
16: 11, | |
17: 10, | |
18: 11, | |
19: 12, | |
20: 13, | |
21: 12, | |
22: 13, | |
23: 14, | |
24: 14, | |
} | |
mask = torch.zeros((sz, sz), dtype=torch.int64, device=torch.device("cpu")) | |
for i in range(DensePoseDataRelative.N_PART_LABELS): | |
mask[I == i + 1] = FINE_TO_COARSE_SEGMENTATION[i + 1] | |
return mask | |