Spaces:
Running
on
Zero
Running
on
Zero
virtual-tryon-demo
/
preprocess
/humanparsing
/mhp_extension
/detectron2
/projects
/TridentNet
/train_net.py
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
TridentNet Training Script. | |
This script is a simplified version of the training script in detectron2/tools. | |
""" | |
import os | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import get_cfg | |
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch | |
from detectron2.evaluation import COCOEvaluator | |
from tridentnet import add_tridentnet_config | |
class Trainer(DefaultTrainer): | |
def build_evaluator(cls, cfg, dataset_name, output_folder=None): | |
if output_folder is None: | |
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") | |
return COCOEvaluator(dataset_name, cfg, True, output_folder) | |
def setup(args): | |
""" | |
Create configs and perform basic setups. | |
""" | |
cfg = get_cfg() | |
add_tridentnet_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.freeze() | |
default_setup(cfg, args) | |
return cfg | |
def main(args): | |
cfg = setup(args) | |
if args.eval_only: | |
model = Trainer.build_model(cfg) | |
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( | |
cfg.MODEL.WEIGHTS, resume=args.resume | |
) | |
res = Trainer.test(cfg, model) | |
return res | |
trainer = Trainer(cfg) | |
trainer.resume_or_load(resume=args.resume) | |
return trainer.train() | |
if __name__ == "__main__": | |
args = default_argument_parser().parse_args() | |
print("Command Line Args:", args) | |
launch( | |
main, | |
args.num_gpus, | |
num_machines=args.num_machines, | |
machine_rank=args.machine_rank, | |
dist_url=args.dist_url, | |
args=(args,), | |
) | |