Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# -*- encoding: utf-8 -*- | |
""" | |
@Author : Peike Li | |
@Contact : [email protected] | |
@File : warmup_scheduler.py | |
@Time : 3/28/19 2:24 PM | |
@Desc : | |
@License : This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
import math | |
from torch.optim.lr_scheduler import _LRScheduler | |
class GradualWarmupScheduler(_LRScheduler): | |
""" Gradually warm-up learning rate with cosine annealing in optimizer. | |
Proposed in 'Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour'. | |
""" | |
def __init__(self, optimizer, total_epoch, eta_min=0, warmup_epoch=10, last_epoch=-1): | |
self.total_epoch = total_epoch | |
self.eta_min = eta_min | |
self.warmup_epoch = warmup_epoch | |
super(GradualWarmupScheduler, self).__init__(optimizer, last_epoch) | |
def get_lr(self): | |
if self.last_epoch <= self.warmup_epoch: | |
return [self.eta_min + self.last_epoch*(base_lr - self.eta_min)/self.warmup_epoch for base_lr in self.base_lrs] | |
else: | |
return [self.eta_min + (base_lr-self.eta_min)*(1+math.cos(math.pi*(self.last_epoch-self.warmup_epoch)/(self.total_epoch-self.warmup_epoch))) / 2 for base_lr in self.base_lrs] | |
class SGDRScheduler(_LRScheduler): | |
""" Consine annealing with warm up and restarts. | |
Proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts`. | |
""" | |
def __init__(self, optimizer, total_epoch=150, start_cyclical=100, cyclical_base_lr=7e-4, cyclical_epoch=10, eta_min=0, warmup_epoch=10, last_epoch=-1): | |
self.total_epoch = total_epoch | |
self.start_cyclical = start_cyclical | |
self.cyclical_epoch = cyclical_epoch | |
self.cyclical_base_lr = cyclical_base_lr | |
self.eta_min = eta_min | |
self.warmup_epoch = warmup_epoch | |
super(SGDRScheduler, self).__init__(optimizer, last_epoch) | |
def get_lr(self): | |
if self.last_epoch < self.warmup_epoch: | |
return [self.eta_min + self.last_epoch*(base_lr - self.eta_min)/self.warmup_epoch for base_lr in self.base_lrs] | |
elif self.last_epoch < self.start_cyclical: | |
return [self.eta_min + (base_lr-self.eta_min)*(1+math.cos(math.pi*(self.last_epoch-self.warmup_epoch)/(self.start_cyclical-self.warmup_epoch))) / 2 for base_lr in self.base_lrs] | |
else: | |
return [self.eta_min + (self.cyclical_base_lr-self.eta_min)*(1+math.cos(math.pi* ((self.last_epoch-self.start_cyclical)% self.cyclical_epoch)/self.cyclical_epoch)) / 2 for base_lr in self.base_lrs] | |
if __name__ == '__main__': | |
import matplotlib.pyplot as plt | |
import torch | |
model = torch.nn.Linear(10, 2) | |
optimizer = torch.optim.SGD(params=model.parameters(), lr=7e-3, momentum=0.9, weight_decay=5e-4) | |
scheduler_warmup = SGDRScheduler(optimizer, total_epoch=150, eta_min=7e-5, warmup_epoch=10, start_cyclical=100, cyclical_base_lr=3.5e-3, cyclical_epoch=10) | |
lr = [] | |
for epoch in range(0,150): | |
scheduler_warmup.step(epoch) | |
lr.append(scheduler_warmup.get_lr()) | |
plt.style.use('ggplot') | |
plt.plot(list(range(0,150)), lr) | |
plt.show() | |