nei-demo-backup / train.py
SmitaGautam's picture
Update train.py
18eb789 verified
raw
history blame
9.93 kB
from datasets import load_dataset
import numpy as np
from sklearn.svm import SVC
from tqdm.notebook import tqdm
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report
import nltk
from nltk.corpus import stopwords
from nltk import word_tokenize
from nltk import pos_tag
import pickle
import time
from nltk.corpus import names, gazetteers
from sklearn.model_selection import KFold
from itertools import chain
from sklearn.metrics import precision_score, recall_score, fbeta_score, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
from string import punctuation
nltk.download('stopwords')
stopwords = stopwords.words('english')
PUNCT = list(punctuation)
nltk.download('gazetteers')
nltk.download('names')
from nltk.corpus import names, gazetteers
places=set(gazetteers.words())
people=set(names.words())
countries=set(gazetteers.words('countries.txt'))
nationalities=set(gazetteers.words('nationalities.txt'))
pos_tags = [ 'CC', 'CD', 'DT', 'EX', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNP', 'NNPS',
'NNS', 'NN|SYM', 'PDT', 'POS', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'SYM', 'TO', 'UH', 'VB', 'VBD',
'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP', 'WP$', 'WRB'
]
def feature_vector(word, scaled_pos, current_word_pos_tag, prev_word, next_word):
features = []
features.append(int(word.lower() in stopwords))
features.append(int(word.isupper()))
features.append(int(word in PUNCT))
features.append(int(word.istitle()))
features.append(int(word.isdigit()))
# features.append(len(word))
features.append(int(word in places))
features.append(int(word in people))
features.append(int(word in countries))
features.append(int(word in nationalities))
if (current_word_pos_tag==12) or (current_word_pos_tag==13): ##NNP, NNPS
features.append(1)
else:
features.append(0)
features.append(scaled_pos)
if 27 <= current_word_pos_tag <= 32: ##isVERB
features.append(1)
else:
features.append(0)
if prev_word!="":
features.append(int(prev_word.lower() in stopwords))
features.append(int(prev_word.isupper()))
features.append(int(prev_word in PUNCT))
features.append(int(prev_word.isdigit()))
features.append(len(prev_word))
features.append((prev_word in places))
features.append((prev_word in people))
features.append((prev_word in countries or prev_word in nationalities))
else:
for _ in range(8):
features.append(0)
if next_word!="":
features.append(int(next_word.lower() in stopwords))
features.append(int(next_word.isupper()))
features.append(int(next_word in PUNCT))
features.append(int(next_word.isdigit()))
features.append(len(next_word))
features.append((next_word in places))
features.append((next_word in people))
features.append((next_word in countries or prev_word in nationalities))
else:
for _ in range(8):
features.append(0)
return np.asarray(features, dtype=np.float32)
def feature_vector2(word, prev_word_pos_tag, next_word_pos_tag, current_word_pos_tag):
vec = np.zeros(9).astype('float32')
if(word.istitle()):
vec[0] = 1
if word.lower() in stopwords:
vec[1] = 1
if(word.isupper()):
vec[2] = 1
vec[3] = len(word)
vec[4] = word.isdigit()
# idx : -11, 0...36
# if prev_word_pos_tag!=-11:
# vec[5+prev_word_pos_tag] = 1
# if next_word_pos_tag!=-11:
# vec[42+next_word_pos_tag] = 1
# if current_word_pos_tag!=-11:
# vec[79+current_word_pos_tag] = 1
vec[5] = 1 if word in places else 0
vec[6] = 1 if word in people else 0
vec[7] = 1 if word in countries else 0
vec[8] = 1 if word in nationalities else 0
return vec
# This function is used to make dataset with features and target label
def create_data(data):
x_train = []
y_train = []
for x in data:
for y in range(len(x['tokens'])):
prev_pos = -1 if y==0 or x['pos_tags'][y-1]<10 else x['pos_tags'][y-1]
next_pos = -1 if y==len(x['tokens'])-1 or x['pos_tags'][y+1]<10 else x['pos_tags'][y+1]
current_pos = -1 if x['pos_tags'][y]<10 else x['pos_tags'][y]
wordVec = feature_vector(x['tokens'][y], prev_pos-10, next_pos-10, current_pos-10)
x_train.append(wordVec)
y_train.append(1 if x['ner_tags'][y]!=0 else 0)
return x_train, y_train
def evaluate_overall_metrics(predictions, folds):
precision, recall, f0_5_score, f1_score, f2_score = 0, 0, 0, 0, 0
for i, (test_label_flat, y_pred_flat) in enumerate(predictions):
# test_label_flat = list(chain.from_iterable(test_label))
# y_pred_flat = list(chain.from_iterable(y_pred))
# Calculate scores
f0_5_score += fbeta_score(test_label_flat, y_pred_flat, beta=0.5, average='weighted')
f1_score += fbeta_score(test_label_flat, y_pred_flat, beta=1, average='weighted')
f2_score += fbeta_score(test_label_flat, y_pred_flat, beta=2, average='weighted')
precision += precision_score(test_label_flat, y_pred_flat, average='weighted')
recall += recall_score(test_label_flat, y_pred_flat, average='weighted')
# Averaging across folds
f0_5_score /= folds
f1_score /= folds
f2_score /= folds
precision /= folds
recall /= folds
print(f'Overall Metrics:')
print(f'Precision : {precision:.3f}')
print(f'Recall : {recall:.3f}')
print(f'F0.5 Score : {f0_5_score:.3f}')
print(f'F1 Score : {f1_score:.3f}')
print(f'F2 Score : {f2_score:.3f}\n')
def evaluate_per_pos_metrics(predictions, labels):
combined_true = []
combined_pred = []
# Flatten the list of lists structure
for test_label, y_pred in predictions:
# for sentence_labels, sentence_preds in zip(test_label, y_pred):
combined_true.extend(test_label)
combined_pred.extend(y_pred)
for tag in labels:
true_binary = [1 if t == tag else 0 for t in combined_true]
pred_binary = [1 if p == tag else 0 for p in combined_pred]
# Calculate metrics for the tag
precision = precision_score(true_binary, pred_binary, average='binary', zero_division=0)
recall = recall_score(true_binary, pred_binary, average='binary', zero_division=0)
f1_score = fbeta_score(true_binary, pred_binary, beta=1, average='binary', zero_division=0)
print(f"Metrics for {tag}:")
print(f'Precision : {precision:.3f}')
print(f'Recall : {recall:.3f}')
print(f'F1 Score : {f1_score:.3f}\n')
def plot_confusion_matrix(predictions, labels, folds):
matrix = None
for i, (test_label_flat, y_pred_flat) in enumerate(predictions):
# test_label_flat = list(chain.from_iterable(test_label))
# y_pred_flat = list(chain.from_iterable(y_pred))
# Compute confusion matrix for this fold
cm = confusion_matrix(test_label_flat, y_pred_flat, labels=labels)
if i == 0:
matrix = cm
else:
matrix += cm
matrix = matrix.astype('float')
matrix = matrix / folds
matrix = matrix / np.sum(matrix, axis=1, keepdims=True) # Normalize
plt.figure(figsize=(10, 8))
sns.heatmap(matrix, annot=True, fmt=".2f", cmap='Blues', xticklabels=labels, yticklabels=labels)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Normalized Confusion Matrix for NER')
plt.show()
if __name__ == "__main__":
data = load_dataset("conll2003", trust_remote_code=True)
d_train = data['train']
d_validation = data['validation']
d_test = data['test']
nltk.download('gazetteers')
places=set(gazetteers.words())
people=set(names.words())
countries=set(gazetteers.words('countries.txt'))
nationalities=set(gazetteers.words('nationalities.txt'))
x_train, y_train = create_data(d_train)
x_val, y_val = create_data(d_validation)
x_test, y_test = create_data(d_test)
all_X_train = np.concatenate((x_train, x_val, x_test))
all_y_train = np.concatenate((y_train, y_val, y_test))
#K-Fold
num_fold = 5
kf = KFold(n_splits=num_fold, random_state=42, shuffle=True)
indices = np.arange(len(all_X_train))
predictions = []
all_models = []
for i, (train_index, test_index) in enumerate(kf.split(indices)):
print(f"Fold {i} Train Length: {len(train_index)} Test Length: {len(test_index)}")
# all_folds.append((train_index, test_index))# Standardize the features such that all features contribute equally to the distance metric computation of the SVM
X_train = all_X_train[train_index]
y_train = all_y_train[train_index]
X_test = all_X_train[test_index]
y_test = all_y_train[test_index]
# scaler = StandardScaler()
# Fit only on the training data (i.e. compute mean and std)
# X_train = scaler.fit_transform(X_train)
# Use the train data fit values to scale val and test
# X_train = scaler.transform(X_train)
# X_val = scaler.transform(X_val)
# X_test = scaler.transform(X_test)
model = SVC(random_state = 42, verbose = True)
model.fit(X_train, y_train)
y_pred_val = model.predict(X_test)
print("-------"*6)
print(classification_report(y_true=y_test, y_pred=y_pred_val))
print("-------"*6)
pickle.dump(model, open(f"ner_svm_{str(i)}.pkl", 'wb'))
predictions.append((y_test, y_pred_val))
all_models.append(model)
break
FOLDS = 5
labels = sorted(model.classes_)
evaluate_overall_metrics(predictions, FOLDS)
evaluate_per_pos_metrics(predictions, labels)
plot_confusion_matrix(predictions, labels, FOLDS)