SmitaGautam commited on
Commit
25b106e
1 Parent(s): 899e4f3

Update svm_predict.py

Browse files
Files changed (1) hide show
  1. svm_predict.py +11 -9
svm_predict.py CHANGED
@@ -4,7 +4,7 @@ from nltk import pos_tag
4
  import joblib
5
  from train import feature_vector, pos_tags
6
 
7
- model = joblib.load('ner_svm_4_withpos_kaggle.pkl')
8
  nltk.download('averaged_perceptron_tagger_eng')
9
  nltk.download('punkt_tab')
10
 
@@ -12,14 +12,16 @@ def predict(sentence):
12
  tokens = word_tokenize(sentence)
13
  sent_pos_tags = pos_tag(tokens)
14
  predictions = []
 
15
  for idx, word in enumerate(tokens):
16
- prev_tag = -1 if idx==0 else sent_pos_tags[idx-1][1]
17
- next_tag = -1 if idx==len(tokens)-1 else sent_pos_tags[idx+1][1]
18
- current_tag = sent_pos_tags[idx][1]
19
- prev_idx = pos_tags.index(prev_tag) if prev_tag in pos_tags else -1
20
- next_idx = pos_tags.index(next_tag) if next_tag in pos_tags else -1
21
- current_idx = pos_tags.index(current_tag) if current_tag in pos_tags else -1
22
- vec = feature_vector(word, prev_idx, next_idx, current_idx)
 
23
  y_pred = model.predict([vec])
24
- predictions.append(y_pred[0])
25
  return tokens, predictions
 
4
  import joblib
5
  from train import feature_vector, pos_tags
6
 
7
+ model = joblib.load('SVM_NEI_model.pkl')
8
  nltk.download('averaged_perceptron_tagger_eng')
9
  nltk.download('punkt_tab')
10
 
 
12
  tokens = word_tokenize(sentence)
13
  sent_pos_tags = pos_tag(tokens)
14
  predictions = []
15
+ l = len(tokens)
16
  for idx, word in enumerate(tokens):
17
+ # prev_tag = -1 if idx==0 else sent_pos_tags[idx-1][1]
18
+ # next_tag = -1 if idx==len(tokens)-1 else sent_pos_tags[idx+1][1]
19
+ # current_tag = sent_pos_tags[idx][1]
20
+ # prev_idx = pos_tags.index(prev_tag) if prev_tag in pos_tags else -1
21
+ # next_idx = pos_tags.index(next_tag) if next_tag in pos_tags else -1
22
+ # current_idx = pos_tags.index(current_tag) if current_tag in pos_tags else -1
23
+ # vec = feature_vector(word, prev_idx, next_idx, current_idx)
24
+ vec = feature_vector(word, idx/l, sent_pos_tags[idx][1])
25
  y_pred = model.predict([vec])
26
+ predictions.append(round(y_pred[0]))
27
  return tokens, predictions