Spaces:
Sleeping
Sleeping
SmitaGautam
commited on
Upload 5 files
Browse files- app.py +28 -0
- ner_svm_4_withpos_kaggle.pkl +3 -0
- requirements.txt +5 -0
- svm_predict.py +24 -0
- train.py +233 -0
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from svm_predict import predict
|
3 |
+
|
4 |
+
def process_sentence(sentence):
|
5 |
+
words, tags = predict(sentence)
|
6 |
+
return " ".join([f"<span style='color:green;'>{word}</span>_<span style='color:blue;'>{tag}</span>" for word, tag in zip(words, tags)])
|
7 |
+
|
8 |
+
iface = gr.Interface(
|
9 |
+
fn=process_sentence,
|
10 |
+
inputs=gr.Textbox(label="Enter a sentence", lines=4),
|
11 |
+
outputs=gr.HTML(label="NEI tagged sentence", elem_id="output-box"),
|
12 |
+
css="""
|
13 |
+
#input-box {
|
14 |
+
width: 50%;
|
15 |
+
height: 150px;
|
16 |
+
}
|
17 |
+
#output-box {
|
18 |
+
overflow-y: scroll; /* Always allow vertical scrolling */
|
19 |
+
padding: 10px;
|
20 |
+
border-radius: 5px;
|
21 |
+
box-sizing: border-box; /* Ensures padding is included */
|
22 |
+
white-space: pre-wrap; /* Ensure the text wraps to avoid horizontal scrolling */
|
23 |
+
}
|
24 |
+
""",
|
25 |
+
live=False
|
26 |
+
)
|
27 |
+
|
28 |
+
iface.launch()
|
ner_svm_4_withpos_kaggle.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c2e68481dbc9bc18616af8926d7d3cd95733ea8e31bd877314a9493ceb999b1
|
3 |
+
size 19938658
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
nltk
|
3 |
+
seaborn
|
4 |
+
joblib
|
5 |
+
numpy
|
svm_predict.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nltk
|
2 |
+
from nltk import word_tokenize
|
3 |
+
from nltk import pos_tag
|
4 |
+
import joblib
|
5 |
+
from train import feature_vector, pos_tags
|
6 |
+
|
7 |
+
model = joblib.load('ner_svm_4_withpos_kaggle.pkl')
|
8 |
+
nltk.download('averaged_perceptron_tagger_eng')
|
9 |
+
|
10 |
+
def predict(sentence):
|
11 |
+
tokens = word_tokenize(sentence)
|
12 |
+
sent_pos_tags = pos_tag(tokens)
|
13 |
+
predictions = []
|
14 |
+
for idx, word in enumerate(tokens):
|
15 |
+
prev_tag = -1 if idx==0 else sent_pos_tags[idx-1][1]
|
16 |
+
next_tag = -1 if idx==len(tokens)-1 else sent_pos_tags[idx+1][1]
|
17 |
+
current_tag = sent_pos_tags[idx][1]
|
18 |
+
prev_idx = pos_tags.index(prev_tag) if prev_tag in pos_tags else -1
|
19 |
+
next_idx = pos_tags.index(next_tag) if next_tag in pos_tags else -1
|
20 |
+
current_idx = pos_tags.index(current_tag) if current_tag in pos_tags else -1
|
21 |
+
vec = feature_vector(word, prev_idx, next_idx, current_idx)
|
22 |
+
y_pred = model.predict([vec])
|
23 |
+
predictions.append(y_pred[0])
|
24 |
+
return tokens, predictions
|
train.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.svm import SVC
|
4 |
+
from tqdm.notebook import tqdm
|
5 |
+
from sklearn.preprocessing import StandardScaler
|
6 |
+
from sklearn.metrics import classification_report
|
7 |
+
import nltk
|
8 |
+
from nltk.corpus import stopwords
|
9 |
+
from nltk import word_tokenize
|
10 |
+
from nltk import pos_tag
|
11 |
+
import pickle
|
12 |
+
import time
|
13 |
+
from nltk.corpus import names, gazetteers
|
14 |
+
from sklearn.model_selection import KFold
|
15 |
+
from itertools import chain
|
16 |
+
from sklearn.metrics import precision_score, recall_score, fbeta_score, confusion_matrix
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
import seaborn as sns
|
19 |
+
|
20 |
+
|
21 |
+
nltk.download('stopwords')
|
22 |
+
stopwords = stopwords.words('english')
|
23 |
+
|
24 |
+
pos_tags = [ 'CC', 'CD', 'DT', 'EX', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNP', 'NNPS',
|
25 |
+
'NNS', 'NN|SYM', 'PDT', 'POS', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'SYM', 'TO', 'UH', 'VB', 'VBD',
|
26 |
+
'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP', 'WP$', 'WRB'
|
27 |
+
]
|
28 |
+
|
29 |
+
def feature_vector(word, prev_word_pos_tag, next_word_pos_tag, current_word_pos_tag):
|
30 |
+
vec = np.zeros(116).astype('float32')
|
31 |
+
if(word.istitle()):
|
32 |
+
vec[0] = 1
|
33 |
+
if word.lower() in stopwords:
|
34 |
+
vec[1] = 1
|
35 |
+
if(word.isupper()):
|
36 |
+
vec[2] = 1
|
37 |
+
vec[3] = len(word)
|
38 |
+
vec[4] = word.isdigit()
|
39 |
+
|
40 |
+
if prev_word_pos_tag!=-1:
|
41 |
+
vec[5+prev_word_pos_tag] = 1
|
42 |
+
|
43 |
+
if next_word_pos_tag!=-1:
|
44 |
+
vec[42+next_word_pos_tag] = 1
|
45 |
+
|
46 |
+
if current_word_pos_tag!=-1:
|
47 |
+
vec[79+current_word_pos_tag] = 1
|
48 |
+
|
49 |
+
return vec
|
50 |
+
|
51 |
+
|
52 |
+
def feature_vector2(word, prev_word_pos_tag, next_word_pos_tag, current_word_pos_tag):
|
53 |
+
vec = np.zeros(9).astype('float32')
|
54 |
+
if(word.istitle()):
|
55 |
+
vec[0] = 1
|
56 |
+
if word.lower() in stopwords:
|
57 |
+
vec[1] = 1
|
58 |
+
if(word.isupper()):
|
59 |
+
vec[2] = 1
|
60 |
+
vec[3] = len(word)
|
61 |
+
vec[4] = word.isdigit()
|
62 |
+
# idx : -11, 0...36
|
63 |
+
# if prev_word_pos_tag!=-11:
|
64 |
+
# vec[5+prev_word_pos_tag] = 1
|
65 |
+
|
66 |
+
# if next_word_pos_tag!=-11:
|
67 |
+
# vec[42+next_word_pos_tag] = 1
|
68 |
+
|
69 |
+
# if current_word_pos_tag!=-11:
|
70 |
+
# vec[79+current_word_pos_tag] = 1
|
71 |
+
|
72 |
+
vec[5] = 1 if word in places else 0
|
73 |
+
vec[6] = 1 if word in people else 0
|
74 |
+
vec[7] = 1 if word in countries else 0
|
75 |
+
vec[8] = 1 if word in nationalities else 0
|
76 |
+
return vec
|
77 |
+
|
78 |
+
|
79 |
+
# This function is used to make dataset with features and target label
|
80 |
+
|
81 |
+
def create_data(data):
|
82 |
+
x_train = []
|
83 |
+
y_train = []
|
84 |
+
for x in data:
|
85 |
+
for y in range(len(x['tokens'])):
|
86 |
+
prev_pos = -1 if y==0 or x['pos_tags'][y-1]<10 else x['pos_tags'][y-1]
|
87 |
+
next_pos = -1 if y==len(x['tokens'])-1 or x['pos_tags'][y+1]<10 else x['pos_tags'][y+1]
|
88 |
+
current_pos = -1 if x['pos_tags'][y]<10 else x['pos_tags'][y]
|
89 |
+
wordVec = feature_vector(x['tokens'][y], prev_pos-10, next_pos-10, current_pos-10)
|
90 |
+
x_train.append(wordVec)
|
91 |
+
y_train.append(1 if x['ner_tags'][y]!=0 else 0)
|
92 |
+
return x_train, y_train
|
93 |
+
|
94 |
+
def evaluate_overall_metrics(predictions, folds):
|
95 |
+
precision, recall, f0_5_score, f1_score, f2_score = 0, 0, 0, 0, 0
|
96 |
+
|
97 |
+
for i, (test_label_flat, y_pred_flat) in enumerate(predictions):
|
98 |
+
# test_label_flat = list(chain.from_iterable(test_label))
|
99 |
+
# y_pred_flat = list(chain.from_iterable(y_pred))
|
100 |
+
|
101 |
+
# Calculate scores
|
102 |
+
f0_5_score += fbeta_score(test_label_flat, y_pred_flat, beta=0.5, average='weighted')
|
103 |
+
f1_score += fbeta_score(test_label_flat, y_pred_flat, beta=1, average='weighted')
|
104 |
+
f2_score += fbeta_score(test_label_flat, y_pred_flat, beta=2, average='weighted')
|
105 |
+
precision += precision_score(test_label_flat, y_pred_flat, average='weighted')
|
106 |
+
recall += recall_score(test_label_flat, y_pred_flat, average='weighted')
|
107 |
+
|
108 |
+
# Averaging across folds
|
109 |
+
f0_5_score /= folds
|
110 |
+
f1_score /= folds
|
111 |
+
f2_score /= folds
|
112 |
+
precision /= folds
|
113 |
+
recall /= folds
|
114 |
+
|
115 |
+
print(f'Overall Metrics:')
|
116 |
+
print(f'Precision : {precision:.3f}')
|
117 |
+
print(f'Recall : {recall:.3f}')
|
118 |
+
print(f'F0.5 Score : {f0_5_score:.3f}')
|
119 |
+
print(f'F1 Score : {f1_score:.3f}')
|
120 |
+
print(f'F2 Score : {f2_score:.3f}\n')
|
121 |
+
|
122 |
+
def evaluate_per_pos_metrics(predictions, labels):
|
123 |
+
combined_true = []
|
124 |
+
combined_pred = []
|
125 |
+
|
126 |
+
# Flatten the list of lists structure
|
127 |
+
for test_label, y_pred in predictions:
|
128 |
+
# for sentence_labels, sentence_preds in zip(test_label, y_pred):
|
129 |
+
combined_true.extend(test_label)
|
130 |
+
combined_pred.extend(y_pred)
|
131 |
+
|
132 |
+
for tag in labels:
|
133 |
+
true_binary = [1 if t == tag else 0 for t in combined_true]
|
134 |
+
pred_binary = [1 if p == tag else 0 for p in combined_pred]
|
135 |
+
|
136 |
+
# Calculate metrics for the tag
|
137 |
+
precision = precision_score(true_binary, pred_binary, average='binary', zero_division=0)
|
138 |
+
recall = recall_score(true_binary, pred_binary, average='binary', zero_division=0)
|
139 |
+
f1_score = fbeta_score(true_binary, pred_binary, beta=1, average='binary', zero_division=0)
|
140 |
+
|
141 |
+
print(f"Metrics for {tag}:")
|
142 |
+
print(f'Precision : {precision:.3f}')
|
143 |
+
print(f'Recall : {recall:.3f}')
|
144 |
+
print(f'F1 Score : {f1_score:.3f}\n')
|
145 |
+
|
146 |
+
def plot_confusion_matrix(predictions, labels, folds):
|
147 |
+
matrix = None
|
148 |
+
for i, (test_label_flat, y_pred_flat) in enumerate(predictions):
|
149 |
+
# test_label_flat = list(chain.from_iterable(test_label))
|
150 |
+
# y_pred_flat = list(chain.from_iterable(y_pred))
|
151 |
+
|
152 |
+
# Compute confusion matrix for this fold
|
153 |
+
cm = confusion_matrix(test_label_flat, y_pred_flat, labels=labels)
|
154 |
+
if i == 0:
|
155 |
+
matrix = cm
|
156 |
+
else:
|
157 |
+
matrix += cm
|
158 |
+
|
159 |
+
matrix = matrix.astype('float')
|
160 |
+
matrix = matrix / folds
|
161 |
+
matrix = matrix / np.sum(matrix, axis=1, keepdims=True) # Normalize
|
162 |
+
|
163 |
+
plt.figure(figsize=(10, 8))
|
164 |
+
sns.heatmap(matrix, annot=True, fmt=".2f", cmap='Blues', xticklabels=labels, yticklabels=labels)
|
165 |
+
plt.xlabel('Predicted')
|
166 |
+
plt.ylabel('Actual')
|
167 |
+
plt.title('Normalized Confusion Matrix for NER')
|
168 |
+
plt.show()
|
169 |
+
|
170 |
+
if __name__ == "__main__":
|
171 |
+
data = load_dataset("conll2003", trust_remote_code=True)
|
172 |
+
d_train = data['train']
|
173 |
+
d_validation = data['validation']
|
174 |
+
d_test = data['test']
|
175 |
+
|
176 |
+
nltk.download('gazetteers')
|
177 |
+
places=set(gazetteers.words())
|
178 |
+
people=set(names.words())
|
179 |
+
countries=set(gazetteers.words('countries.txt'))
|
180 |
+
nationalities=set(gazetteers.words('nationalities.txt'))
|
181 |
+
x_train, y_train = create_data(d_train)
|
182 |
+
x_val, y_val = create_data(d_validation)
|
183 |
+
x_test, y_test = create_data(d_test)
|
184 |
+
all_X_train = np.concatenate((x_train, x_val, x_test))
|
185 |
+
all_y_train = np.concatenate((y_train, y_val, y_test))
|
186 |
+
|
187 |
+
#K-Fold
|
188 |
+
num_fold = 5
|
189 |
+
kf = KFold(n_splits=num_fold, random_state=42, shuffle=True)
|
190 |
+
indices = np.arange(len(all_X_train))
|
191 |
+
|
192 |
+
predictions = []
|
193 |
+
all_models = []
|
194 |
+
|
195 |
+
for i, (train_index, test_index) in enumerate(kf.split(indices)):
|
196 |
+
print(f"Fold {i} Train Length: {len(train_index)} Test Length: {len(test_index)}")
|
197 |
+
# all_folds.append((train_index, test_index))# Standardize the features such that all features contribute equally to the distance metric computation of the SVM
|
198 |
+
X_train = all_X_train[train_index]
|
199 |
+
y_train = all_y_train[train_index]
|
200 |
+
|
201 |
+
X_test = all_X_train[test_index]
|
202 |
+
y_test = all_y_train[test_index]
|
203 |
+
|
204 |
+
# scaler = StandardScaler()
|
205 |
+
# Fit only on the training data (i.e. compute mean and std)
|
206 |
+
# X_train = scaler.fit_transform(X_train)
|
207 |
+
|
208 |
+
# Use the train data fit values to scale val and test
|
209 |
+
# X_train = scaler.transform(X_train)
|
210 |
+
# X_val = scaler.transform(X_val)
|
211 |
+
# X_test = scaler.transform(X_test)
|
212 |
+
|
213 |
+
model = SVC(random_state = 42, verbose = True)
|
214 |
+
model.fit(X_train, y_train)
|
215 |
+
|
216 |
+
y_pred_val = model.predict(X_test)
|
217 |
+
|
218 |
+
print("-------"*6)
|
219 |
+
print(classification_report(y_true=y_test, y_pred=y_pred_val))
|
220 |
+
print("-------"*6)
|
221 |
+
|
222 |
+
pickle.dump(model, open(f"ner_svm_{str(i)}.pkl", 'wb'))
|
223 |
+
|
224 |
+
predictions.append((y_test, y_pred_val))
|
225 |
+
all_models.append(model)
|
226 |
+
break
|
227 |
+
|
228 |
+
|
229 |
+
FOLDS = 5
|
230 |
+
labels = sorted(model.classes_)
|
231 |
+
evaluate_overall_metrics(predictions, FOLDS)
|
232 |
+
evaluate_per_pos_metrics(predictions, labels)
|
233 |
+
plot_confusion_matrix(predictions, labels, FOLDS)
|