Spaces:
Sleeping
Sleeping
Commit
·
1df5d20
1
Parent(s):
fe6e4b5
Update app.py
Browse files
app.py
CHANGED
@@ -9,13 +9,8 @@ import pickle
|
|
9 |
|
10 |
|
11 |
|
12 |
-
# Load your tumor classification model
|
13 |
-
|
14 |
-
try:
|
15 |
-
cnn_model = tf.keras.models.load_model('cnn_tumor_model.h5')
|
16 |
-
except Exception as e:
|
17 |
-
st.error(f"Error loading tumor model: {e}")
|
18 |
-
|
19 |
|
20 |
# Function to perform image classification using CNN
|
21 |
def classify_image(img, cnn_model):
|
@@ -28,23 +23,22 @@ def classify_image(img, cnn_model):
|
|
28 |
return "Tumor Detected"
|
29 |
else:
|
30 |
return "No Tumor"
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
# Load the saved tokenizer
|
38 |
-
with open('
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
|
43 |
# Process input text similarly to training data
|
44 |
-
encoded_input =
|
45 |
padded_input = tf.keras.preprocessing.sequence.pad_sequences(encoded_input, maxlen=max_length, padding='post')
|
46 |
# Get the probabilities of being classified as "Spam" for each input
|
47 |
-
predictions =
|
48 |
# Define a threshold (e.g., 0.5) for classification
|
49 |
threshold = 0.5
|
50 |
# Make the predictions based on the threshold for each input
|
@@ -55,290 +49,52 @@ def predict_message(input_text, tokeniser):
|
|
55 |
return "Not spam"
|
56 |
|
57 |
|
58 |
-
# Load the saved model
|
59 |
-
sms_sentiment_model=tf.keras.models.load_model('sms_sentiment_model.h5')
|
60 |
-
|
61 |
-
# Load the saved tokenizer
|
62 |
-
with open('tokenizer_smsglove.pickle', 'rb') as handle:
|
63 |
-
smstokeniser = pickle.load(handle)
|
64 |
-
|
65 |
-
|
66 |
-
def predict_sms_sentiment(message):
|
67 |
-
maxlen=50
|
68 |
-
sequence = smstokeniser.texts_to_sequences([message])
|
69 |
-
sequence = tf.keras.preprocessing.sequence.pad_sequences(sequence, padding='post', maxlen=maxlen)
|
70 |
-
prediction = sms_sentiment_model.predict(sequence)[0, 0]
|
71 |
-
if prediction > 0.5:
|
72 |
-
return 'Spam'
|
73 |
-
else:
|
74 |
-
return 'Not spam'
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
# Load the saved model
|
80 |
-
imdb_model = tf.keras.models.load_model('lstm_imdb_model.h5')
|
81 |
-
top_words = 5000
|
82 |
-
max_review_length = 500
|
83 |
-
|
84 |
-
# Function to predict sentiment for a given review
|
85 |
-
def predict_sentiment(review):
|
86 |
-
# Process input text similarly to training data
|
87 |
-
word_index = imdb.get_word_index()
|
88 |
-
review = review.lower().split()
|
89 |
-
review = [word_index[word] if word in word_index and word_index[word] < top_words else 0 for word in review]
|
90 |
-
review = sequence.pad_sequences([review], maxlen=max_review_length)
|
91 |
-
prediction = imdb_model.predict(review)
|
92 |
-
if prediction > 0.5:
|
93 |
-
return "Positive"
|
94 |
-
else:
|
95 |
-
return "Negative"
|
96 |
-
|
97 |
-
|
98 |
-
# Load the saved model
|
99 |
-
gru_movie_model = tf.keras.models.load_model('gru_movie_model.h5')
|
100 |
-
with open('tokenizer_movie_gru.pickle', 'rb') as handle:
|
101 |
-
lstm_movie_tokeniser = pickle.load(handle)
|
102 |
-
|
103 |
-
|
104 |
-
# Function to predict sentiment for a given review
|
105 |
-
def gru_predict_sentiment(review):
|
106 |
-
maxlen = 100
|
107 |
-
sequence = lstm_movie_tokeniser.texts_to_sequences([review])
|
108 |
-
sequence = tf.keras.preprocessing.sequence.pad_sequences(sequence, padding='post', maxlen=maxlen)
|
109 |
-
prediction = gru_movie_model.predict(sequence)
|
110 |
-
if prediction > 0.5:
|
111 |
-
return "Positive"
|
112 |
-
else:
|
113 |
-
return "Negative"
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
# Load the saved model
|
119 |
-
iris_dnn_model = tf.keras.models.load_model('iris_dnn_model.h5')
|
120 |
-
|
121 |
-
def predict_iris_class(input_data):
|
122 |
-
# Make predictions using the loaded model
|
123 |
-
prediction = iris_dnn_model.predict(input_data)
|
124 |
-
predicted_class = argmax(prediction)
|
125 |
-
|
126 |
-
class_names = ['setosa', 'versicolor', 'virginica']
|
127 |
-
predicted_class_name = class_names[predicted_class]
|
128 |
-
|
129 |
-
return prediction, predicted_class_name
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
# Load the saved model
|
135 |
-
mnist_model = tf.keras.models.load_model('mnist_cnn_model.h5')
|
136 |
-
|
137 |
-
def predict_digit(file_path):
|
138 |
-
# Load the image using PIL
|
139 |
-
image = Image.open(file_path)
|
140 |
-
# Convert the image to grayscale
|
141 |
-
image = image.convert('L')
|
142 |
-
# Resize the image to 28x28 (same as MNIST dataset)
|
143 |
-
image = image.resize((28, 28))
|
144 |
-
# Convert image to array
|
145 |
-
image_array = np.array(image)
|
146 |
-
# Reshape and normalize the image (similar to training data)
|
147 |
-
processed_image = image_array.reshape((1, 28, 28, 1))
|
148 |
-
processed_image = processed_image.astype('float32') / 255.0
|
149 |
-
# Make predictions using the loaded model
|
150 |
-
prediction = mnist_model.predict(processed_image)
|
151 |
-
predicted_class = np.argmax(prediction)
|
152 |
-
return predicted_class
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
# Load the model from the file using pickle
|
158 |
-
with open('iris_perceptron_model.pkl', 'rb') as file:
|
159 |
-
iris_perceptron_model = pickle.load(file)
|
160 |
-
def predict_iris_species(input_data):
|
161 |
-
# Make predictions using the loaded Perceptron model
|
162 |
-
prediction = iris_perceptron_model.predict(input_data)
|
163 |
-
predicted_class = prediction[0] # Assuming the prediction is a single class
|
164 |
-
classes = {0: 'Setosa', 1: 'Not Setosa'} # Map prediction to class label
|
165 |
-
predicted_class_name = classes[predicted_class]
|
166 |
-
|
167 |
-
return predicted_class_name
|
168 |
-
|
169 |
-
# Load the model from the file using pickle
|
170 |
-
with open('iris_backprop_model.pkl', 'rb') as file:
|
171 |
-
iris_backprop_model = pickle.load(file)
|
172 |
-
def predict_iris_species_backprop(input_data):
|
173 |
-
# Make predictions using the loaded Perceptron model
|
174 |
-
prediction = iris_backprop_model.predict(input_data)
|
175 |
-
predicted_class = prediction[0] # Assuming the prediction is a single class
|
176 |
-
classes = {0: 'Setosa', 1: 'Not Setosa'} # Map prediction to class label
|
177 |
-
predicted_class_name = classes[predicted_class]
|
178 |
-
|
179 |
-
return predicted_class_name
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
|
189 |
# Main function for Streamlit app
|
190 |
-
def main():
|
191 |
-
st.title("Multitasking App
|
192 |
-
st.subheader("Task Selecetion")
|
193 |
-
|
194 |
-
# Dropdown for task selection
|
195 |
-
task = st.selectbox("Select Task", ["Tumor Detection-CNN", "Digit Recognition-CNN","SMS Spam Detection-RNN","SMS Spam Detection-LSTM", "IMDb Sentiment Analysis-LSTM","Movie Sentiment Analysis-GRU", "Iris Flower Classification-DNN","Iris Species Prediction-Perceptron","Iris Species Prediction-Backpropagation"])
|
196 |
-
|
197 |
-
if task == "Tumor Detection-CNN":
|
198 |
-
st.subheader("Tumor Detection-CNN")
|
199 |
-
uploaded_file = st.file_uploader("Upload an image to check for tumor...", type=["jpg", "png", "jpeg"])
|
200 |
-
|
201 |
-
if uploaded_file is not None:
|
202 |
-
# Display the image
|
203 |
-
image_display = Image.open(uploaded_file)
|
204 |
-
st.image(image_display, caption="Uploaded Image", use_column_width=True)
|
205 |
-
|
206 |
-
if st.button("Detect Tumor"):
|
207 |
-
# Call the tumor detection function
|
208 |
-
result = classify_image(uploaded_file, cnn_model)
|
209 |
-
st.write("Tumor Detection Result:", result)
|
210 |
-
|
211 |
-
|
212 |
-
elif task == "SMS Spam Detection-RNN":
|
213 |
-
st.subheader("SMS Spam Detection-RNN")
|
214 |
-
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|
215 |
-
|
216 |
-
if st.button("Predict"):
|
217 |
-
if user_input:
|
218 |
-
prediction_result = predict_message(user_input, tokeniser)
|
219 |
-
st.write(f"The message is classified as: {prediction_result}")
|
220 |
-
else:
|
221 |
-
st.write("Please enter some text for prediction")
|
222 |
-
|
223 |
-
|
224 |
-
elif task == "SMS Spam Detection-LSTM":
|
225 |
-
st.subheader("SMS Spam Detection-LSTM")
|
226 |
-
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|
227 |
-
|
228 |
-
if st.button("Predict"):
|
229 |
-
if user_input:
|
230 |
-
prediction_result = predict_sms_sentiment(user_input)
|
231 |
-
st.write(f"The message is classified as: {prediction_result}")
|
232 |
-
else:
|
233 |
-
st.write("Please enter some text for prediction")
|
234 |
-
|
235 |
-
|
236 |
-
elif task == "IMDb Sentiment Analysis-LSTM":
|
237 |
-
st.subheader("IMDb Sentiment Analysis-LSTM")
|
238 |
-
user_review = st.text_area("Enter a movie review: ")
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
sentiment_result = predict_sentiment(user_review)
|
243 |
-
st.write(f"The sentiment of the review is: {sentiment_result}")
|
244 |
-
else:
|
245 |
-
st.write("Please enter a movie review for sentiment analysis")
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
st.
|
250 |
-
user_review = st.text_area("Enter a movie review: ")
|
251 |
|
252 |
-
if
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
259 |
|
260 |
-
|
261 |
-
|
|
|
|
|
262 |
|
263 |
-
# Input fields for user to enter data
|
264 |
-
sepal_length = st.number_input("Sepal Length", min_value=0.1, max_value=10.0, value=5.0)
|
265 |
-
sepal_width = st.number_input("Sepal Width", min_value=0.1, max_value=10.0, value=3.5)
|
266 |
-
petal_length = st.number_input("Petal Length", min_value=0.1, max_value=10.0, value=1.4)
|
267 |
-
petal_width = st.number_input("Petal Width", min_value=0.1, max_value=10.0, value=0.2)
|
268 |
-
|
269 |
-
if st.button("Predict Iris Class"):
|
270 |
-
# Prepare input data for prediction
|
271 |
-
input_row = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
|
272 |
-
|
273 |
-
# Get prediction results
|
274 |
-
probabilities, predicted_class = predict_iris_class(input_row)
|
275 |
-
|
276 |
-
# Display prediction results
|
277 |
-
st.subheader("Prediction Results")
|
278 |
-
st.write('Predicted probabilities:', probabilities)
|
279 |
-
st.write('Predicted class:', predicted_class)
|
280 |
-
|
281 |
-
|
282 |
-
elif task == "Digit Recognition-CNN":
|
283 |
-
st.subheader("Digit Recognition-CNN")
|
284 |
-
|
285 |
-
uploaded_digit = st.file_uploader("Upload an image of a digit (0-9) to predict...", accept_multiple_files=True)
|
286 |
-
|
287 |
-
if uploaded_digit is not None:
|
288 |
-
# Display the uploaded digit image(s)
|
289 |
-
for digit_image in uploaded_digit:
|
290 |
-
img = Image.open(digit_image)
|
291 |
-
st.image(img, caption="Uploaded Image", use_column_width=True)
|
292 |
-
|
293 |
-
if st.button("Predict Digit"):
|
294 |
-
# Call the digit prediction function
|
295 |
-
digit_prediction = predict_digit(digit_image)
|
296 |
-
st.write(f"The predicted digit is : {digit_prediction}")
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
elif task == "Iris Species Prediction-Perceptron":
|
302 |
-
st.subheader("Iris Species Prediction-Perceptron")
|
303 |
|
304 |
-
# Input fields for user to enter data
|
305 |
-
sepal_length = st.number_input("Sepal Length", min_value=0.1, max_value=10.0, value=5.0)
|
306 |
-
sepal_width = st.number_input("Sepal Width", min_value=0.1, max_value=10.0, value=3.5)
|
307 |
-
|
308 |
-
if st.button("Predict Iris Species"):
|
309 |
-
# Prepare input data for prediction
|
310 |
-
input_row = np.array([[sepal_length, sepal_width]])
|
311 |
-
|
312 |
-
# Get prediction results using Perceptron model
|
313 |
-
predicted_class_perceptron = predict_iris_species(input_row)
|
314 |
|
315 |
-
|
316 |
-
|
317 |
-
st.write('Predicted class:', predicted_class_perceptron)
|
318 |
-
|
319 |
-
|
320 |
-
elif task == "Iris Species Prediction-Backpropagation":
|
321 |
-
st.subheader("Iris Species Prediction-Backpropagation")
|
322 |
-
|
323 |
-
# Input fields for user to enter data
|
324 |
-
sepal_length = st.number_input("Sepal Length", min_value=0.1, max_value=10.0, value=5.0)
|
325 |
-
sepal_width = st.number_input("Sepal Width", min_value=0.1, max_value=10.0, value=2.5)
|
326 |
-
|
327 |
-
if st.button("Predict Iris Species"):
|
328 |
-
# Prepare input data for prediction
|
329 |
-
input_row = np.array([[sepal_length, sepal_width]])
|
330 |
-
|
331 |
-
# Get prediction results using Perceptron model
|
332 |
-
predicted_class = predict_iris_species_backprop(input_row)
|
333 |
-
|
334 |
-
# Display prediction results
|
335 |
-
st.subheader("Prediction Results")
|
336 |
-
st.write('Predicted class:', predicted_class)
|
337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
|
340 |
-
|
|
|
|
|
341 |
|
342 |
if __name__ == "__main__":
|
343 |
main()
|
344 |
-
|
|
|
9 |
|
10 |
|
11 |
|
12 |
+
# Load your CNN tumor classification model
|
13 |
+
cnn_model = tf.keras.models.load_model('APP\cnn_tumor_model.h5')
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Function to perform image classification using CNN
|
16 |
def classify_image(img, cnn_model):
|
|
|
23 |
return "Tumor Detected"
|
24 |
else:
|
25 |
return "No Tumor"
|
|
|
|
|
|
|
26 |
|
27 |
+
|
28 |
+
|
29 |
+
# Load your RNN SMS spam detection model
|
30 |
+
rnn_smsspam_model = tf.keras.models.load_model('APP/rnn_smsspam_model.h5')
|
31 |
# Load the saved tokenizer
|
32 |
+
with open('APP/rnn_smsspam_tokenizer.pickle', 'rb') as handle:
|
33 |
+
rnn_smsspam_tokenizer = pickle.load(handle)
|
34 |
|
35 |
+
def rnn_predict_message(input_text):
|
36 |
+
max_length=20
|
37 |
# Process input text similarly to training data
|
38 |
+
encoded_input = rnn_smsspam_tokenizer.texts_to_sequences([input_text])
|
39 |
padded_input = tf.keras.preprocessing.sequence.pad_sequences(encoded_input, maxlen=max_length, padding='post')
|
40 |
# Get the probabilities of being classified as "Spam" for each input
|
41 |
+
predictions = rnn_smsspam_model.predict(padded_input)
|
42 |
# Define a threshold (e.g., 0.5) for classification
|
43 |
threshold = 0.5
|
44 |
# Make the predictions based on the threshold for each input
|
|
|
49 |
return "Not spam"
|
50 |
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Main function for Streamlit app
|
54 |
+
def main():
|
55 |
+
st.title("Multitasking App")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Sidebar dropdown for selecting tasks
|
58 |
+
task = st.sidebar.radio("Select Task", (["Tumor Detection", "SMS Spam Detection", "Movie Sentiment Analysis"]))
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# Depending on the selected task, provide model options
|
61 |
+
if task == "Tumor Detection":
|
62 |
+
model = st.sidebar.radio("Select Model", (["CNN"]))
|
|
|
63 |
|
64 |
+
if model == "CNN":
|
65 |
+
st.subheader("Tumor Detection")
|
66 |
+
uploaded_file = st.file_uploader("Upload an image to check for tumor...", type=["jpg", "png", "jpeg"])
|
67 |
+
|
68 |
+
if uploaded_file is not None:
|
69 |
+
# Display the image
|
70 |
+
image_display = Image.open(uploaded_file)
|
71 |
+
st.image(image_display, caption="Uploaded Image", use_column_width=True)
|
72 |
|
73 |
+
if st.button("Detect Tumor"):
|
74 |
+
# Call the tumor detection function
|
75 |
+
result = classify_image(uploaded_file, cnn_model)
|
76 |
+
st.write("Tumor Detection Result:", result)
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
elif task == "SMS Spam Detection":
|
81 |
+
model = st.sidebar.radio("Select Model", (["Perceptron", "Backpropagation", "DNN", "RNN", "LSTM"]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
if model == "RNN":
|
84 |
+
st.subheader("SMS Spam Detection")
|
85 |
+
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|
86 |
+
|
87 |
+
if st.button("Predict"):
|
88 |
+
if user_input:
|
89 |
+
prediction_result = rnn_predict_message(user_input)
|
90 |
+
st.write(f"The message is classified as: {prediction_result}")
|
91 |
+
else:
|
92 |
+
st.write("Please enter some text for prediction")
|
93 |
|
94 |
|
95 |
+
elif task == "Movie Sentiment Analysis":
|
96 |
+
model = st.sidebar.radio("Select Model", (["Perceptron", "Backpropagation", "DNN", "RNN", "LSTM", "GRU"]))
|
97 |
+
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
main()
|
|