Spaces:
Sleeping
Sleeping
Commit
·
37bc6d8
1
Parent(s):
c9a87cd
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,6 +25,28 @@ def classify_image(img, cnn_model):
|
|
| 25 |
return "No Tumor"
|
| 26 |
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# Load your RNN SMS spam detection model
|
| 30 |
rnn_smsspam_model = tf.keras.models.load_model('rnn_smsspam_model.h5')
|
|
@@ -107,6 +129,17 @@ def main():
|
|
| 107 |
else:
|
| 108 |
st.write("Please enter some text for prediction")
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
elif model == "LSTM":
|
| 111 |
st.subheader("SMS Spam Detection")
|
| 112 |
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|
|
|
|
| 25 |
return "No Tumor"
|
| 26 |
|
| 27 |
|
| 28 |
+
# Load your DNN SMS spam detection model
|
| 29 |
+
dnn_smsspam_model = tf.keras.models.load_model('dnn_smsspam_model.h5')
|
| 30 |
+
# Load the saved tokenizer
|
| 31 |
+
with open('dnn_smsspam_tokenizer.pickle', 'rb') as handle:
|
| 32 |
+
dnn_smsspam_tokenizer = pickle.load(handle)
|
| 33 |
+
|
| 34 |
+
def dnn_predict_message(input_text):
|
| 35 |
+
max_length=20
|
| 36 |
+
# Process input text similarly to training data
|
| 37 |
+
encoded_input = dnn_smsspam_tokenizer.texts_to_sequences([input_text])
|
| 38 |
+
padded_input = tf.keras.preprocessing.sequence.pad_sequences(encoded_input, maxlen=max_length, padding='post')
|
| 39 |
+
# Get the probabilities of being classified as "Spam" for each input
|
| 40 |
+
predictions = dnn_smsspam_model.predict(padded_input)
|
| 41 |
+
# Define a threshold (e.g., 0.5) for classification
|
| 42 |
+
threshold = 0.5
|
| 43 |
+
# Make the predictions based on the threshold for each input
|
| 44 |
+
for prediction in predictions:
|
| 45 |
+
if prediction > threshold:
|
| 46 |
+
return "Spam"
|
| 47 |
+
else:
|
| 48 |
+
return "Not spam"
|
| 49 |
+
|
| 50 |
|
| 51 |
# Load your RNN SMS spam detection model
|
| 52 |
rnn_smsspam_model = tf.keras.models.load_model('rnn_smsspam_model.h5')
|
|
|
|
| 129 |
else:
|
| 130 |
st.write("Please enter some text for prediction")
|
| 131 |
|
| 132 |
+
elif model == "DNN":
|
| 133 |
+
st.subheader("SMS Spam Detection")
|
| 134 |
+
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|
| 135 |
+
|
| 136 |
+
if st.button("Predict"):
|
| 137 |
+
if user_input:
|
| 138 |
+
prediction_result = dnn_predict_message(user_input)
|
| 139 |
+
st.write(f"The message is classified as: {prediction_result}")
|
| 140 |
+
else:
|
| 141 |
+
st.write("Please enter some text for prediction")
|
| 142 |
+
|
| 143 |
elif model == "LSTM":
|
| 144 |
st.subheader("SMS Spam Detection")
|
| 145 |
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|