Spaces:
Sleeping
Sleeping
Commit
·
4ea013b
1
Parent(s):
598cb5c
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
from tensorflow.keras.datasets import imdb
|
6 |
+
from tensorflow.keras.preprocessing import sequence
|
7 |
+
from numpy import argmax
|
8 |
+
import pickle
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# Load your tumor classification model
|
13 |
+
#cnn_model = tf.keras.models.load_model('cnn_tumor_model.h5')
|
14 |
+
try:
|
15 |
+
cnn_model = tf.keras.models.load_model('cnn_tumor_model.h5')
|
16 |
+
except Exception as e:
|
17 |
+
st.error(f"Error loading tumor model: {e}")
|
18 |
+
|
19 |
+
|
20 |
+
# Function to perform image classification using CNN
|
21 |
+
def classify_image(img, cnn_model):
|
22 |
+
img = Image.open(img)
|
23 |
+
img = img.resize((128, 128))
|
24 |
+
img = np.array(img)
|
25 |
+
input_img = np.expand_dims(img, axis=0)
|
26 |
+
res = cnn_model.predict(input_img)
|
27 |
+
if res > 0.5:
|
28 |
+
return "Tumor Detected"
|
29 |
+
else:
|
30 |
+
return "No Tumor"
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
# Load your SMS spam detection model
|
36 |
+
spam_model = tf.keras.models.load_model('spammodel.h5')
|
37 |
+
# Load the saved tokenizer
|
38 |
+
with open('tokenizer.pickle', 'rb') as handle:
|
39 |
+
tokeniser = pickle.load(handle)
|
40 |
+
|
41 |
+
max_length=20
|
42 |
+
def predict_message(input_text, tokeniser):
|
43 |
+
# Process input text similarly to training data
|
44 |
+
encoded_input = tokeniser.texts_to_sequences([input_text])
|
45 |
+
padded_input = tf.keras.preprocessing.sequence.pad_sequences(encoded_input, maxlen=max_length, padding='post')
|
46 |
+
# Get the probabilities of being classified as "Spam" for each input
|
47 |
+
predictions = spam_model.predict(padded_input)
|
48 |
+
# Define a threshold (e.g., 0.5) for classification
|
49 |
+
threshold = 0.5
|
50 |
+
# Make the predictions based on the threshold for each input
|
51 |
+
for prediction in predictions:
|
52 |
+
if prediction > threshold:
|
53 |
+
return "Spam"
|
54 |
+
else:
|
55 |
+
return "Not spam"
|
56 |
+
|
57 |
+
|
58 |
+
# Load the saved model
|
59 |
+
sms_sentiment_model=tf.keras.models.load_model('sms_sentiment_model.h5')
|
60 |
+
|
61 |
+
# Load the saved tokenizer
|
62 |
+
with open('tokenizer_smsglove.pickle', 'rb') as handle:
|
63 |
+
smstokeniser = pickle.load(handle)
|
64 |
+
|
65 |
+
|
66 |
+
def predict_sms_sentiment(message):
|
67 |
+
maxlen=50
|
68 |
+
sequence = smstokeniser.texts_to_sequences([message])
|
69 |
+
sequence = tf.keras.preprocessing.sequence.pad_sequences(sequence, padding='post', maxlen=maxlen)
|
70 |
+
prediction = sms_sentiment_model.predict(sequence)[0, 0]
|
71 |
+
if prediction > 0.5:
|
72 |
+
return 'Spam'
|
73 |
+
else:
|
74 |
+
return 'Not spam'
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
# Load the saved model
|
80 |
+
imdb_model = tf.keras.models.load_model('lstm_imdb_model.h5')
|
81 |
+
top_words = 5000
|
82 |
+
max_review_length = 500
|
83 |
+
|
84 |
+
# Function to predict sentiment for a given review
|
85 |
+
def predict_sentiment(review):
|
86 |
+
# Process input text similarly to training data
|
87 |
+
word_index = imdb.get_word_index()
|
88 |
+
review = review.lower().split()
|
89 |
+
review = [word_index[word] if word in word_index and word_index[word] < top_words else 0 for word in review]
|
90 |
+
review = sequence.pad_sequences([review], maxlen=max_review_length)
|
91 |
+
prediction = imdb_model.predict(review)
|
92 |
+
if prediction > 0.5:
|
93 |
+
return "Positive"
|
94 |
+
else:
|
95 |
+
return "Negative"
|
96 |
+
|
97 |
+
|
98 |
+
# Load the saved model
|
99 |
+
gru_movie_model = tf.keras.models.load_model('gru_movie_model.h5')
|
100 |
+
with open('tokenizer_movie_gru.pickle', 'rb') as handle:
|
101 |
+
lstm_movie_tokeniser = pickle.load(handle)
|
102 |
+
|
103 |
+
|
104 |
+
# Function to predict sentiment for a given review
|
105 |
+
def gru_predict_sentiment(review):
|
106 |
+
maxlen = 100
|
107 |
+
sequence = lstm_movie_tokeniser.texts_to_sequences([review])
|
108 |
+
sequence = tf.keras.preprocessing.sequence.pad_sequences(sequence, padding='post', maxlen=maxlen)
|
109 |
+
prediction = gru_movie_model.predict(sequence)
|
110 |
+
if prediction > 0.5:
|
111 |
+
return "Positive"
|
112 |
+
else:
|
113 |
+
return "Negative"
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
# Load the saved model
|
119 |
+
iris_dnn_model = tf.keras.models.load_model('iris_dnn_model.h5')
|
120 |
+
|
121 |
+
def predict_iris_class(input_data):
|
122 |
+
# Make predictions using the loaded model
|
123 |
+
prediction = iris_dnn_model.predict(input_data)
|
124 |
+
predicted_class = argmax(prediction)
|
125 |
+
|
126 |
+
class_names = ['setosa', 'versicolor', 'virginica']
|
127 |
+
predicted_class_name = class_names[predicted_class]
|
128 |
+
|
129 |
+
return prediction, predicted_class_name
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
# Load the saved model
|
135 |
+
mnist_model = tf.keras.models.load_model('mnist_cnn_model.h5')
|
136 |
+
|
137 |
+
def predict_digit(file_path):
|
138 |
+
# Load the image using PIL
|
139 |
+
image = Image.open(file_path)
|
140 |
+
# Convert the image to grayscale
|
141 |
+
image = image.convert('L')
|
142 |
+
# Resize the image to 28x28 (same as MNIST dataset)
|
143 |
+
image = image.resize((28, 28))
|
144 |
+
# Convert image to array
|
145 |
+
image_array = np.array(image)
|
146 |
+
# Reshape and normalize the image (similar to training data)
|
147 |
+
processed_image = image_array.reshape((1, 28, 28, 1))
|
148 |
+
processed_image = processed_image.astype('float32') / 255.0
|
149 |
+
# Make predictions using the loaded model
|
150 |
+
prediction = mnist_model.predict(processed_image)
|
151 |
+
predicted_class = np.argmax(prediction)
|
152 |
+
return predicted_class
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
# Load the model from the file using pickle
|
158 |
+
with open('iris_perceptron_model.pkl', 'rb') as file:
|
159 |
+
iris_perceptron_model = pickle.load(file)
|
160 |
+
def predict_iris_species(input_data):
|
161 |
+
# Make predictions using the loaded Perceptron model
|
162 |
+
prediction = iris_perceptron_model.predict(input_data)
|
163 |
+
predicted_class = prediction[0] # Assuming the prediction is a single class
|
164 |
+
classes = {0: 'Setosa', 1: 'Not Setosa'} # Map prediction to class label
|
165 |
+
predicted_class_name = classes[predicted_class]
|
166 |
+
|
167 |
+
return predicted_class_name
|
168 |
+
|
169 |
+
# Load the model from the file using pickle
|
170 |
+
with open('iris_backprop_model.pkl', 'rb') as file:
|
171 |
+
iris_backprop_model = pickle.load(file)
|
172 |
+
def predict_iris_species_backprop(input_data):
|
173 |
+
# Make predictions using the loaded Perceptron model
|
174 |
+
prediction = iris_backprop_model.predict(input_data)
|
175 |
+
predicted_class = prediction[0] # Assuming the prediction is a single class
|
176 |
+
classes = {0: 'Setosa', 1: 'Not Setosa'} # Map prediction to class label
|
177 |
+
predicted_class_name = classes[predicted_class]
|
178 |
+
|
179 |
+
return predicted_class_name
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
# Main function for Streamlit app
|
190 |
+
def main():
|
191 |
+
st.title("Multitasking App for Image, Text and Data Analysis")
|
192 |
+
st.subheader("Task Selecetion")
|
193 |
+
|
194 |
+
# Dropdown for task selection
|
195 |
+
task = st.selectbox("Select Task", ["Tumor Detection-CNN", "Digit Recognition-CNN","SMS Spam Detection-RNN","SMS Spam Detection-LSTM", "IMDb Sentiment Analysis-LSTM","Movie Sentiment Analysis-GRU", "Iris Flower Classification-DNN","Iris Species Prediction-Perceptron","Iris Species Prediction-Backpropagation"])
|
196 |
+
|
197 |
+
if task == "Tumor Detection-CNN":
|
198 |
+
st.subheader("Tumor Detection-CNN")
|
199 |
+
uploaded_file = st.file_uploader("Upload an image to check for tumor...", type=["jpg", "png", "jpeg"])
|
200 |
+
|
201 |
+
if uploaded_file is not None:
|
202 |
+
# Display the image
|
203 |
+
image_display = Image.open(uploaded_file)
|
204 |
+
st.image(image_display, caption="Uploaded Image", use_column_width=True)
|
205 |
+
|
206 |
+
if st.button("Detect Tumor"):
|
207 |
+
# Call the tumor detection function
|
208 |
+
result = classify_image(uploaded_file, cnn_model)
|
209 |
+
st.write("Tumor Detection Result:", result)
|
210 |
+
|
211 |
+
|
212 |
+
elif task == "SMS Spam Detection-RNN":
|
213 |
+
st.subheader("SMS Spam Detection-RNN")
|
214 |
+
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|
215 |
+
|
216 |
+
if st.button("Predict"):
|
217 |
+
if user_input:
|
218 |
+
prediction_result = predict_message(user_input, tokeniser)
|
219 |
+
st.write(f"The message is classified as: {prediction_result}")
|
220 |
+
else:
|
221 |
+
st.write("Please enter some text for prediction")
|
222 |
+
|
223 |
+
|
224 |
+
elif task == "SMS Spam Detection-LSTM":
|
225 |
+
st.subheader("SMS Spam Detection-LSTM")
|
226 |
+
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|
227 |
+
|
228 |
+
if st.button("Predict"):
|
229 |
+
if user_input:
|
230 |
+
prediction_result = predict_sms_sentiment(user_input)
|
231 |
+
st.write(f"The message is classified as: {prediction_result}")
|
232 |
+
else:
|
233 |
+
st.write("Please enter some text for prediction")
|
234 |
+
|
235 |
+
|
236 |
+
elif task == "IMDb Sentiment Analysis-LSTM":
|
237 |
+
st.subheader("IMDb Sentiment Analysis-LSTM")
|
238 |
+
user_review = st.text_area("Enter a movie review: ")
|
239 |
+
|
240 |
+
if st.button("Analyze Sentiment"):
|
241 |
+
if user_review:
|
242 |
+
sentiment_result = predict_sentiment(user_review)
|
243 |
+
st.write(f"The sentiment of the review is: {sentiment_result}")
|
244 |
+
else:
|
245 |
+
st.write("Please enter a movie review for sentiment analysis")
|
246 |
+
|
247 |
+
|
248 |
+
elif task == "Movie Sentiment Analysis-GRU":
|
249 |
+
st.subheader("Movie Sentiment Analysis-GRU")
|
250 |
+
user_review = st.text_area("Enter a movie review: ")
|
251 |
+
|
252 |
+
if st.button("Analyze Sentiment"):
|
253 |
+
if user_review:
|
254 |
+
sentiment_result = gru_predict_sentiment(user_review)
|
255 |
+
st.write(f"The sentiment of the review is: {sentiment_result}")
|
256 |
+
else:
|
257 |
+
st.write("Please enter a movie review for sentiment analysis")
|
258 |
+
|
259 |
+
|
260 |
+
elif task == "Iris Flower Classification-DNN":
|
261 |
+
st.subheader("Iris Flower Classification-DNN")
|
262 |
+
|
263 |
+
# Input fields for user to enter data
|
264 |
+
sepal_length = st.number_input("Sepal Length", min_value=0.1, max_value=10.0, value=5.0)
|
265 |
+
sepal_width = st.number_input("Sepal Width", min_value=0.1, max_value=10.0, value=3.5)
|
266 |
+
petal_length = st.number_input("Petal Length", min_value=0.1, max_value=10.0, value=1.4)
|
267 |
+
petal_width = st.number_input("Petal Width", min_value=0.1, max_value=10.0, value=0.2)
|
268 |
+
|
269 |
+
if st.button("Predict Iris Class"):
|
270 |
+
# Prepare input data for prediction
|
271 |
+
input_row = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
|
272 |
+
|
273 |
+
# Get prediction results
|
274 |
+
probabilities, predicted_class = predict_iris_class(input_row)
|
275 |
+
|
276 |
+
# Display prediction results
|
277 |
+
st.subheader("Prediction Results")
|
278 |
+
st.write('Predicted probabilities:', probabilities)
|
279 |
+
st.write('Predicted class:', predicted_class)
|
280 |
+
|
281 |
+
|
282 |
+
elif task == "Digit Recognition-CNN":
|
283 |
+
st.subheader("Digit Recognition-CNN")
|
284 |
+
|
285 |
+
uploaded_digit = st.file_uploader("Upload an image of a digit (0-9) to predict...", accept_multiple_files=True)
|
286 |
+
|
287 |
+
if uploaded_digit is not None:
|
288 |
+
# Display the uploaded digit image(s)
|
289 |
+
for digit_image in uploaded_digit:
|
290 |
+
img = Image.open(digit_image)
|
291 |
+
st.image(img, caption="Uploaded Image", use_column_width=True)
|
292 |
+
|
293 |
+
if st.button("Predict Digit"):
|
294 |
+
# Call the digit prediction function
|
295 |
+
digit_prediction = predict_digit(digit_image)
|
296 |
+
st.write(f"The predicted digit is : {digit_prediction}")
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
elif task == "Iris Species Prediction-Perceptron":
|
302 |
+
st.subheader("Iris Species Prediction-Perceptron")
|
303 |
+
|
304 |
+
# Input fields for user to enter data
|
305 |
+
sepal_length = st.number_input("Sepal Length", min_value=0.1, max_value=10.0, value=5.0)
|
306 |
+
sepal_width = st.number_input("Sepal Width", min_value=0.1, max_value=10.0, value=3.5)
|
307 |
+
|
308 |
+
if st.button("Predict Iris Species"):
|
309 |
+
# Prepare input data for prediction
|
310 |
+
input_row = np.array([[sepal_length, sepal_width]])
|
311 |
+
|
312 |
+
# Get prediction results using Perceptron model
|
313 |
+
predicted_class_perceptron = predict_iris_species(input_row)
|
314 |
+
|
315 |
+
# Display prediction results
|
316 |
+
st.subheader("Prediction Results")
|
317 |
+
st.write('Predicted class:', predicted_class_perceptron)
|
318 |
+
|
319 |
+
|
320 |
+
elif task == "Iris Species Prediction-Backpropagation":
|
321 |
+
st.subheader("Iris Species Prediction-Backpropagation")
|
322 |
+
|
323 |
+
# Input fields for user to enter data
|
324 |
+
sepal_length = st.number_input("Sepal Length", min_value=0.1, max_value=10.0, value=5.0)
|
325 |
+
sepal_width = st.number_input("Sepal Width", min_value=0.1, max_value=10.0, value=2.5)
|
326 |
+
|
327 |
+
if st.button("Predict Iris Species"):
|
328 |
+
# Prepare input data for prediction
|
329 |
+
input_row = np.array([[sepal_length, sepal_width]])
|
330 |
+
|
331 |
+
# Get prediction results using Perceptron model
|
332 |
+
predicted_class = predict_iris_species_backprop(input_row)
|
333 |
+
|
334 |
+
# Display prediction results
|
335 |
+
st.subheader("Prediction Results")
|
336 |
+
st.write('Predicted class:', predicted_class)
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
+
if __name__ == "__main__":
|
343 |
+
main()
|
344 |
+
|