Spaces:
Sleeping
Sleeping
Commit
·
835448b
1
Parent(s):
f8dc74c
Upload 4 files
Browse files- backprop_movie_model.pkl +3 -0
- backpropagation_movie_model.ipynb +932 -0
- perceptron_movie_model.ipynb +248 -0
- perceptron_movie_model.pkl +3 -0
backprop_movie_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0779acfbb238a84f17b1e16c8a75eef8548f6b2c46f5195d750dd68eca9e757
|
3 |
+
size 4297
|
backpropagation_movie_model.ipynb
ADDED
@@ -0,0 +1,932 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"#### Movie Sentiment Analysis Model using Backpropagation"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"from tensorflow.keras.datasets import imdb\n",
|
17 |
+
"import numpy as np\n",
|
18 |
+
"from tqdm import tqdm\n",
|
19 |
+
"from BackPropogation import BackPropogation\n",
|
20 |
+
"from tensorflow.keras.preprocessing import sequence\n",
|
21 |
+
"from sklearn.metrics import confusion_matrix, classification_report\n",
|
22 |
+
"import pickle"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 2,
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"name": "stderr",
|
32 |
+
"output_type": "stream",
|
33 |
+
"text": [
|
34 |
+
" 20%|██ | 1/5 [00:00<00:00, 4.34it/s]"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"name": "stdout",
|
39 |
+
"output_type": "stream",
|
40 |
+
"text": [
|
41 |
+
"Updated Weights after epoch 0 with [ 3.00000000e-01 4.00000000e-01 5.00000000e-01 6.00000000e-01\n",
|
42 |
+
" 3.00000000e-01 2.00000000e-01 1.00000000e-01 2.00000000e-01\n",
|
43 |
+
" 4.00000000e-01 3.00000000e-01 4.00000000e-01 4.00000000e-01\n",
|
44 |
+
" 3.00000000e-01 4.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
45 |
+
" -2.00000000e-01 -2.77555756e-17 -1.00000000e-01 -1.00000000e-01\n",
|
46 |
+
" -2.00000000e-01 -2.77555756e-17 -2.00000000e-01 -1.00000000e-01\n",
|
47 |
+
" -1.00000000e-01 4.00000000e-01 5.00000000e-01 1.00000000e+00\n",
|
48 |
+
" 7.00000000e-01 5.00000000e-01 2.00000000e-01 4.00000000e-01\n",
|
49 |
+
" 2.00000000e-01 4.00000000e-01 7.00000000e-01 7.00000000e-01\n",
|
50 |
+
" 5.00000000e-01 3.00000000e-01 2.00000000e-01 1.00000000e-01\n",
|
51 |
+
" 2.00000000e-01 -2.77555756e-17 1.00000000e-01 4.00000000e-01\n",
|
52 |
+
" 2.00000000e-01 1.00000000e-01 -2.00000000e-01 -4.00000000e-01\n",
|
53 |
+
" -8.00000000e-01 -1.10000000e+00 -7.00000000e-01 -6.00000000e-01\n",
|
54 |
+
" -4.00000000e-01 -3.00000000e-01 2.77555756e-17 -3.00000000e-01\n",
|
55 |
+
" -5.00000000e-01 -5.00000000e-01 -6.00000000e-01 -3.00000000e-01\n",
|
56 |
+
" -4.00000000e-01 -6.00000000e-01 -7.00000000e-01 -9.00000000e-01\n",
|
57 |
+
" -6.00000000e-01 -5.00000000e-01 -3.00000000e-01 -2.00000000e-01\n",
|
58 |
+
" 1.00000000e-01 4.00000000e-01 4.00000000e-01 5.00000000e-01\n",
|
59 |
+
" 4.00000000e-01 4.00000000e-01 7.00000000e-01 4.00000000e-01\n",
|
60 |
+
" 1.00000000e-01 5.00000000e-01 4.00000000e-01 6.00000000e-01\n",
|
61 |
+
" 6.00000000e-01 2.00000000e-01 3.00000000e-01 6.00000000e-01\n",
|
62 |
+
" 2.00000000e-01 -1.00000000e-01 1.00000000e-01 -1.00000000e-01\n",
|
63 |
+
" -3.00000000e-01 -1.00000000e-01 2.00000000e-01 -3.00000000e-01\n",
|
64 |
+
" -5.00000000e-01 -5.00000000e-01 -1.10000000e+00 -1.10000000e+00\n",
|
65 |
+
" -8.00000000e-01 -8.00000000e-01 -5.00000000e-01 -5.00000000e-01\n",
|
66 |
+
" -4.00000000e-01 2.00000000e-01 3.00000000e-01 4.00000000e-01\n",
|
67 |
+
" 5.00000000e-01 2.00000000e-01 -2.00000000e-01 1.00000000e-01\n",
|
68 |
+
" 1.00000000e-01 2.77555756e-17 2.77555756e-17 -1.00000000e-01\n",
|
69 |
+
" 1.00000000e-01 -1.00000000e-01 -1.00000000e-01 -2.00000000e-01\n",
|
70 |
+
" 2.77555756e-17 2.77555756e-17 1.00000000e-01 -2.00000000e-01\n",
|
71 |
+
" -5.00000000e-01 -6.00000000e-01 -9.00000000e-01 -7.00000000e-01\n",
|
72 |
+
" -6.00000000e-01 -4.00000000e-01 -3.00000000e-01 -1.00000000e-01\n",
|
73 |
+
" -1.00000000e-01 -3.00000000e-01 -2.77555756e-17 -3.00000000e-01\n",
|
74 |
+
" 1.00000000e-01 2.00000000e-01 1.00000000e-01 4.00000000e-01\n",
|
75 |
+
" 2.00000000e-01 6.00000000e-01 1.00000000e+00 8.00000000e-01\n",
|
76 |
+
" 9.00000000e-01 5.00000000e-01 1.00000000e-01 -2.00000000e-01\n",
|
77 |
+
" -2.00000000e-01 -4.00000000e-01 -4.00000000e-01 -7.00000000e-01\n",
|
78 |
+
" -4.00000000e-01 -7.00000000e-01 -7.00000000e-01 -3.00000000e-01\n",
|
79 |
+
" -5.00000000e-01 -2.00000000e-01 4.00000000e-01 7.00000000e-01\n",
|
80 |
+
" 9.00000000e-01 5.00000000e-01 2.00000000e-01 -6.00000000e-01\n",
|
81 |
+
" -3.00000000e-01 -2.77555756e-17 2.00000000e-01 1.00000000e-01\n",
|
82 |
+
" -3.00000000e-01 1.00000000e-01 5.00000000e-01 2.00000000e-01\n",
|
83 |
+
" 3.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
84 |
+
" 1.00000000e-01 2.77555756e-17 -1.00000000e-01 -4.00000000e-01\n",
|
85 |
+
" -5.00000000e-01 -3.00000000e-01 -7.00000000e-01 -1.30000000e+00\n",
|
86 |
+
" -1.00000000e+00 -4.00000000e-01 1.00000000e-01 3.00000000e-01\n",
|
87 |
+
" 4.00000000e-01 1.00000000e-01 -2.00000000e-01 2.77555756e-17\n",
|
88 |
+
" -1.00000000e-01 -6.00000000e-01 -5.00000000e-01 -2.00000000e-01\n",
|
89 |
+
" -7.00000000e-01 -3.00000000e-01 -9.00000000e-01 -7.00000000e-01\n",
|
90 |
+
" -2.00000000e-01 2.77555756e-17 -4.00000000e-01 -3.00000000e-01\n",
|
91 |
+
" -1.00000000e+00 -1.00000000e+00 -1.10000000e+00 -1.00000000e+00\n",
|
92 |
+
" -1.00000000e-01 3.00000000e-01 1.00000000e-01 2.77555756e-17\n",
|
93 |
+
" -1.00000000e-01 -2.00000000e-01 -3.00000000e-01 -7.00000000e-01\n",
|
94 |
+
" -7.00000000e-01 -2.00000000e-01 -6.00000000e-01 -6.00000000e-01\n",
|
95 |
+
" -2.00000000e-01 -3.00000000e-01 -2.00000000e-01 -4.00000000e-01\n",
|
96 |
+
" -1.30000000e+00 -7.00000000e-01 -2.00000000e-01 1.00000000e-01\n",
|
97 |
+
" 4.00000000e-01 8.00000000e-01 2.77555756e-17 -2.00000000e-01\n",
|
98 |
+
" -8.00000000e-01 -8.00000000e-01 -9.00000000e-01 -7.00000000e-01\n",
|
99 |
+
" -1.30000000e+00 -7.00000000e-01 -4.00000000e-01 -5.00000000e-01\n",
|
100 |
+
" -1.00000000e-01 -8.00000000e-01 -6.00000000e-01 -7.00000000e-01\n",
|
101 |
+
" -8.00000000e-01 -3.00000000e-01 -4.00000000e-01 1.00000000e-01\n",
|
102 |
+
" 1.20000000e+00 1.10000000e+00 1.20000000e+00 7.00000000e-01\n",
|
103 |
+
" 1.00000000e-01 4.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
104 |
+
" 1.00000000e-01 5.00000000e-01 3.00000000e-01 -2.77555756e-17\n",
|
105 |
+
" 3.00000000e-01 5.00000000e-01 6.00000000e-01 6.00000000e-01\n",
|
106 |
+
" 1.00000000e-01 -1.00000000e-01 -6.00000000e-01 -1.00000000e-01\n",
|
107 |
+
" 6.00000000e-01 3.00000000e-01 2.00000000e-01 6.00000000e-01\n",
|
108 |
+
" 2.77555756e-17 -8.00000000e-01 -9.00000000e-01 -6.00000000e-01\n",
|
109 |
+
" -6.00000000e-01 -6.00000000e-01 -4.00000000e-01 -3.00000000e-01\n",
|
110 |
+
" 1.00000000e-01 2.00000000e+00 2.00000000e+00 1.10000000e+00\n",
|
111 |
+
" -5.00000000e-01 -1.00000000e-01 2.00000000e-01 -4.00000000e-01\n",
|
112 |
+
" -3.00000000e-01 -5.00000000e-01 -5.00000000e-01 -1.00000000e-01\n",
|
113 |
+
" 2.77555756e-17 2.77555756e-17 -3.00000000e-01 -3.00000000e-01\n",
|
114 |
+
" 2.00000000e-01 4.00000000e-01 6.00000000e-01 1.10000000e+00\n",
|
115 |
+
" 7.00000000e-01 -4.00000000e-01 -2.77555756e-17 3.00000000e-01\n",
|
116 |
+
" -3.00000000e-01 3.00000000e-01 -1.00000000e-01 9.00000000e-01\n",
|
117 |
+
" 2.00000000e-01 7.00000000e-01 1.10000000e+00 1.00000000e-01\n",
|
118 |
+
" 4.00000000e-01 -1.00000000e-01 -3.00000000e-01 5.00000000e-01\n",
|
119 |
+
" 2.77555756e-17 1.00000000e-01 6.00000000e-01 1.00000000e-01\n",
|
120 |
+
" -1.00000000e+00 -1.00000000e+00 -6.00000000e-01 -6.00000000e-01\n",
|
121 |
+
" -6.00000000e-01 -6.00000000e-01 -4.00000000e-01 -4.00000000e-01\n",
|
122 |
+
" -1.00000000e-01 -4.00000000e-01 -2.00000000e-01 3.00000000e-01\n",
|
123 |
+
" -6.00000000e-01 -1.10000000e+00 -1.20000000e+00 -1.00000000e-01\n",
|
124 |
+
" 8.00000000e-01 2.00000000e-01 -6.00000000e-01 -1.00000000e-01\n",
|
125 |
+
" -5.00000000e-01 -1.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
126 |
+
" -6.00000000e-01 -5.00000000e-01 -6.00000000e-01 -5.00000000e-01\n",
|
127 |
+
" 1.00000000e-01 2.00000000e-01 1.00000000e+00 -4.00000000e-01\n",
|
128 |
+
" 3.00000000e-01 1.00000000e-01 2.00000000e-01 1.30000000e+00\n",
|
129 |
+
" 4.00000000e-01 4.00000000e-01 -8.00000000e-01 1.00000000e-01\n",
|
130 |
+
" -2.00000000e-01 3.00000000e-01 2.00000000e-01 -4.00000000e-01\n",
|
131 |
+
" -8.00000000e-01 3.00000000e-01 -1.00000000e+00 -4.00000000e-01\n",
|
132 |
+
" -2.00000000e-01 3.00000000e-01 2.00000000e-01 1.00000000e-01\n",
|
133 |
+
" 4.00000000e-01 6.00000000e-01 -3.00000000e-01 -6.00000000e-01\n",
|
134 |
+
" -1.10000000e+00 -5.00000000e-01 -7.00000000e-01 -4.00000000e-01\n",
|
135 |
+
" -1.10000000e+00 -9.00000000e-01 1.10000000e+00 -1.00000000e-01\n",
|
136 |
+
" -3.00000000e-01 1.00000000e-01 -4.00000000e-01 -5.00000000e-01\n",
|
137 |
+
" 8.00000000e-01 5.00000000e-01 -2.00000000e-01 -7.00000000e-01\n",
|
138 |
+
" 4.00000000e-01 6.00000000e-01 -4.00000000e-01 -7.00000000e-01\n",
|
139 |
+
" 1.00000000e-01 9.00000000e-01 1.00000000e-01 2.77555756e-17\n",
|
140 |
+
" 1.00000000e-01 7.00000000e-01 2.00000000e-01 7.00000000e-01\n",
|
141 |
+
" 5.00000000e-01 -5.00000000e-01 -4.00000000e-01 -8.00000000e-01\n",
|
142 |
+
" -4.00000000e-01 -6.00000000e-01 -1.00000000e+00 -7.00000000e-01\n",
|
143 |
+
" -6.00000000e-01 -1.00000000e-01 -7.00000000e-01 -1.30000000e+00\n",
|
144 |
+
" -4.00000000e-01 -3.00000000e-01 -8.00000000e-01 -5.00000000e-01\n",
|
145 |
+
" -2.00000000e-01 -5.00000000e-01 -2.00000000e-01 4.00000000e-01\n",
|
146 |
+
" 5.00000000e-01 3.00000000e-01 2.00000000e-01 -1.00000000e-01\n",
|
147 |
+
" -2.77555756e-17 2.77555756e-17 -3.00000000e-01 1.00000000e-01\n",
|
148 |
+
" 3.00000000e-01 -1.00000000e-01 -5.00000000e-01 -5.00000000e-01\n",
|
149 |
+
" -6.00000000e-01 -9.00000000e-01 -5.00000000e-01 2.00000000e-01\n",
|
150 |
+
" -3.00000000e-01 -7.00000000e-01 -8.00000000e-01 -1.00000000e-01\n",
|
151 |
+
" -3.00000000e-01 -2.00000000e-01 -2.00000000e-01 1.00000000e-01\n",
|
152 |
+
" 1.00000000e-01 1.10000000e+00 1.10000000e+00 -1.00000000e-01\n",
|
153 |
+
" -5.00000000e-01 -5.00000000e-01 2.00000000e-01 5.00000000e-01\n",
|
154 |
+
" 5.00000000e-01 1.00000000e-01 -2.00000000e-01 -6.00000000e-01\n",
|
155 |
+
" -1.00000000e-01 -3.00000000e-01 -1.00000000e-01 -2.77555756e-17\n",
|
156 |
+
" 3.00000000e-01 2.00000000e-01 -4.00000000e-01 -2.00000000e-01\n",
|
157 |
+
" -5.00000000e-01 -1.00000000e-01 -1.00000000e-01 2.77555756e-17\n",
|
158 |
+
" -1.00000000e-01 1.00000000e-01 2.00000000e-01 3.00000000e-01\n",
|
159 |
+
" 2.00000000e-01 2.00000000e-01 3.00000000e-01 3.00000000e-01\n",
|
160 |
+
" 3.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
161 |
+
" 1.00000000e-01 2.00000000e-01 3.00000000e-01 3.00000000e-01\n",
|
162 |
+
" 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
163 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
164 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
165 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01]\n"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"name": "stderr",
|
170 |
+
"output_type": "stream",
|
171 |
+
"text": [
|
172 |
+
" 40%|████ | 2/5 [00:00<00:00, 4.22it/s]"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"name": "stdout",
|
177 |
+
"output_type": "stream",
|
178 |
+
"text": [
|
179 |
+
"Updated Weights after epoch 1 with [ 4.00000000e-01 7.00000000e-01 8.00000000e-01 9.00000000e-01\n",
|
180 |
+
" 2.00000000e-01 -2.00000000e-01 -5.00000000e-01 -3.00000000e-01\n",
|
181 |
+
" 2.00000000e-01 1.00000000e-01 5.00000000e-01 4.00000000e-01\n",
|
182 |
+
" 2.00000000e-01 3.00000000e-01 1.00000000e-01 -1.00000000e-01\n",
|
183 |
+
" -6.00000000e-01 -2.00000000e-01 -4.00000000e-01 -2.00000000e-01\n",
|
184 |
+
" -4.00000000e-01 -2.77555756e-17 -4.00000000e-01 -2.00000000e-01\n",
|
185 |
+
" -2.00000000e-01 6.00000000e-01 5.00000000e-01 1.40000000e+00\n",
|
186 |
+
" 8.00000000e-01 7.00000000e-01 1.00000000e-01 3.00000000e-01\n",
|
187 |
+
" -2.77555756e-17 3.00000000e-01 1.00000000e+00 1.00000000e+00\n",
|
188 |
+
" 6.00000000e-01 4.00000000e-01 1.00000000e-01 -2.77555756e-17\n",
|
189 |
+
" 1.00000000e-01 -2.77555756e-17 4.00000000e-01 7.00000000e-01\n",
|
190 |
+
" 5.00000000e-01 2.00000000e-01 -1.00000000e-01 -3.00000000e-01\n",
|
191 |
+
" -1.00000000e+00 -1.40000000e+00 -5.00000000e-01 -5.00000000e-01\n",
|
192 |
+
" -2.00000000e-01 -1.00000000e-01 3.00000000e-01 -1.00000000e-01\n",
|
193 |
+
" -3.00000000e-01 -6.00000000e-01 -9.00000000e-01 -3.00000000e-01\n",
|
194 |
+
" -6.00000000e-01 -8.00000000e-01 -9.00000000e-01 -1.40000000e+00\n",
|
195 |
+
" -8.00000000e-01 -7.00000000e-01 -4.00000000e-01 -3.00000000e-01\n",
|
196 |
+
" 1.00000000e-01 7.00000000e-01 5.00000000e-01 3.00000000e-01\n",
|
197 |
+
" 3.00000000e-01 2.00000000e-01 8.00000000e-01 3.00000000e-01\n",
|
198 |
+
" -3.00000000e-01 8.00000000e-01 6.00000000e-01 6.00000000e-01\n",
|
199 |
+
" 7.00000000e-01 1.00000000e-01 5.00000000e-01 1.00000000e+00\n",
|
200 |
+
" 2.77555756e-17 -5.00000000e-01 2.77555756e-17 -2.00000000e-01\n",
|
201 |
+
" -5.00000000e-01 -4.00000000e-01 4.00000000e-01 -3.00000000e-01\n",
|
202 |
+
" -7.00000000e-01 -6.00000000e-01 -1.70000000e+00 -1.60000000e+00\n",
|
203 |
+
" -1.10000000e+00 -1.00000000e+00 -5.00000000e-01 -4.00000000e-01\n",
|
204 |
+
" -3.00000000e-01 8.00000000e-01 1.00000000e+00 1.20000000e+00\n",
|
205 |
+
" 1.10000000e+00 6.00000000e-01 2.77555756e-17 4.00000000e-01\n",
|
206 |
+
" 3.00000000e-01 -3.00000000e-01 -3.00000000e-01 -4.00000000e-01\n",
|
207 |
+
" -1.00000000e-01 -1.00000000e-01 -3.00000000e-01 -4.00000000e-01\n",
|
208 |
+
" 2.77555756e-17 1.00000000e-01 5.00000000e-01 -1.00000000e-01\n",
|
209 |
+
" -9.00000000e-01 -9.00000000e-01 -1.30000000e+00 -8.00000000e-01\n",
|
210 |
+
" -1.00000000e+00 -6.00000000e-01 -6.00000000e-01 -1.00000000e-01\n",
|
211 |
+
" -2.00000000e-01 -3.00000000e-01 2.00000000e-01 -1.00000000e-01\n",
|
212 |
+
" 1.00000000e-01 4.00000000e-01 5.00000000e-01 9.00000000e-01\n",
|
213 |
+
" 6.00000000e-01 1.30000000e+00 1.90000000e+00 1.40000000e+00\n",
|
214 |
+
" 1.70000000e+00 8.00000000e-01 5.00000000e-01 -1.00000000e-01\n",
|
215 |
+
" -1.00000000e-01 -5.00000000e-01 -5.00000000e-01 -1.00000000e+00\n",
|
216 |
+
" -6.00000000e-01 -1.40000000e+00 -1.40000000e+00 -7.00000000e-01\n",
|
217 |
+
" -1.00000000e+00 -6.00000000e-01 4.00000000e-01 7.00000000e-01\n",
|
218 |
+
" 1.30000000e+00 5.00000000e-01 2.00000000e-01 -1.40000000e+00\n",
|
219 |
+
" -5.00000000e-01 1.00000000e-01 5.00000000e-01 3.00000000e-01\n",
|
220 |
+
" -9.00000000e-01 -3.00000000e-01 2.00000000e-01 -3.00000000e-01\n",
|
221 |
+
" 2.00000000e-01 2.77555756e-17 2.00000000e-01 6.00000000e-01\n",
|
222 |
+
" 6.00000000e-01 6.00000000e-01 3.00000000e-01 -1.00000000e-01\n",
|
223 |
+
" -4.00000000e-01 -3.00000000e-01 -1.30000000e+00 -2.30000000e+00\n",
|
224 |
+
" -1.60000000e+00 -8.00000000e-01 3.00000000e-01 7.00000000e-01\n",
|
225 |
+
" 9.00000000e-01 1.00000000e-01 -3.00000000e-01 1.00000000e-01\n",
|
226 |
+
" 3.00000000e-01 -4.00000000e-01 -3.00000000e-01 3.00000000e-01\n",
|
227 |
+
" -9.00000000e-01 2.77555756e-17 -1.30000000e+00 -1.00000000e+00\n",
|
228 |
+
" 2.77555756e-17 4.00000000e-01 -1.00000000e-01 -1.00000000e-01\n",
|
229 |
+
" -1.20000000e+00 -1.20000000e+00 -1.30000000e+00 -1.50000000e+00\n",
|
230 |
+
" -3.00000000e-01 2.00000000e-01 -3.00000000e-01 -2.00000000e-01\n",
|
231 |
+
" -5.00000000e-01 -3.00000000e-01 -3.00000000e-01 -1.10000000e+00\n",
|
232 |
+
" -9.00000000e-01 -2.00000000e-01 -8.00000000e-01 -7.00000000e-01\n",
|
233 |
+
" -1.00000000e-01 -6.00000000e-01 -4.00000000e-01 -4.00000000e-01\n",
|
234 |
+
" -1.90000000e+00 -9.00000000e-01 2.77555756e-17 6.00000000e-01\n",
|
235 |
+
" 1.00000000e+00 1.30000000e+00 3.00000000e-01 2.00000000e-01\n",
|
236 |
+
" -1.00000000e+00 -1.00000000e+00 -9.00000000e-01 -2.00000000e-01\n",
|
237 |
+
" -1.40000000e+00 -1.00000000e-01 7.00000000e-01 4.00000000e-01\n",
|
238 |
+
" 9.00000000e-01 1.00000000e-01 -3.00000000e-01 -7.00000000e-01\n",
|
239 |
+
" -1.30000000e+00 -4.00000000e-01 -1.00000000e+00 -4.00000000e-01\n",
|
240 |
+
" 1.30000000e+00 9.00000000e-01 1.20000000e+00 3.00000000e-01\n",
|
241 |
+
" -8.00000000e-01 -2.00000000e-01 -1.00000000e-01 -4.00000000e-01\n",
|
242 |
+
" -2.00000000e-01 4.00000000e-01 -4.00000000e-01 -7.00000000e-01\n",
|
243 |
+
" 1.00000000e-01 1.00000000e+00 1.10000000e+00 1.00000000e+00\n",
|
244 |
+
" 6.00000000e-01 2.00000000e-01 -3.00000000e-01 -2.77555756e-17\n",
|
245 |
+
" 1.10000000e+00 5.00000000e-01 4.00000000e-01 1.30000000e+00\n",
|
246 |
+
" -2.00000000e-01 -1.00000000e+00 -1.00000000e+00 -3.00000000e-01\n",
|
247 |
+
" -5.00000000e-01 -5.00000000e-01 -6.00000000e-01 -6.00000000e-01\n",
|
248 |
+
" 2.00000000e-01 3.00000000e+00 2.80000000e+00 1.70000000e+00\n",
|
249 |
+
" -9.00000000e-01 -4.00000000e-01 6.00000000e-01 -3.00000000e-01\n",
|
250 |
+
" -5.00000000e-01 -9.00000000e-01 -6.00000000e-01 -3.00000000e-01\n",
|
251 |
+
" -1.00000000e-01 3.00000000e-01 -3.00000000e-01 -8.00000000e-01\n",
|
252 |
+
" 4.00000000e-01 3.00000000e-01 4.00000000e-01 1.60000000e+00\n",
|
253 |
+
" 1.30000000e+00 -6.00000000e-01 -1.00000000e-01 6.00000000e-01\n",
|
254 |
+
" -8.00000000e-01 2.00000000e-01 -6.00000000e-01 1.80000000e+00\n",
|
255 |
+
" 3.00000000e-01 9.00000000e-01 1.70000000e+00 3.00000000e-01\n",
|
256 |
+
" 5.00000000e-01 -3.00000000e-01 -6.00000000e-01 9.00000000e-01\n",
|
257 |
+
" -1.00000000e-01 -3.00000000e-01 6.00000000e-01 2.00000000e-01\n",
|
258 |
+
" -1.00000000e+00 -1.50000000e+00 -9.00000000e-01 -5.00000000e-01\n",
|
259 |
+
" -9.00000000e-01 -1.10000000e+00 -4.00000000e-01 1.00000000e-01\n",
|
260 |
+
" 9.00000000e-01 -4.00000000e-01 -9.00000000e-01 5.00000000e-01\n",
|
261 |
+
" -9.00000000e-01 -1.20000000e+00 -1.20000000e+00 4.00000000e-01\n",
|
262 |
+
" 1.40000000e+00 3.00000000e-01 -1.10000000e+00 -3.00000000e-01\n",
|
263 |
+
" -6.00000000e-01 -4.00000000e-01 1.00000000e-01 -1.00000000e-01\n",
|
264 |
+
" -8.00000000e-01 -3.00000000e-01 -6.00000000e-01 -1.00000000e-01\n",
|
265 |
+
" 4.00000000e-01 3.00000000e-01 1.80000000e+00 -8.00000000e-01\n",
|
266 |
+
" 4.00000000e-01 -4.00000000e-01 -3.00000000e-01 2.10000000e+00\n",
|
267 |
+
" 5.00000000e-01 9.00000000e-01 -7.00000000e-01 8.00000000e-01\n",
|
268 |
+
" -3.00000000e-01 8.00000000e-01 7.00000000e-01 -3.00000000e-01\n",
|
269 |
+
" -6.00000000e-01 1.40000000e+00 -5.00000000e-01 -2.00000000e-01\n",
|
270 |
+
" -3.00000000e-01 2.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
271 |
+
" 1.20000000e+00 9.00000000e-01 -6.00000000e-01 -1.00000000e+00\n",
|
272 |
+
" -1.30000000e+00 -1.00000000e-01 -9.00000000e-01 -3.00000000e-01\n",
|
273 |
+
" -1.70000000e+00 -1.10000000e+00 2.00000000e+00 -3.00000000e-01\n",
|
274 |
+
" -4.00000000e-01 2.00000000e-01 -6.00000000e-01 -1.30000000e+00\n",
|
275 |
+
" 8.00000000e-01 1.00000000e-01 -1.00000000e-01 -1.40000000e+00\n",
|
276 |
+
" 6.00000000e-01 8.00000000e-01 -1.30000000e+00 -1.40000000e+00\n",
|
277 |
+
" -2.77555756e-17 1.40000000e+00 -1.00000000e-01 -5.00000000e-01\n",
|
278 |
+
" -3.00000000e-01 1.00000000e+00 3.00000000e-01 1.30000000e+00\n",
|
279 |
+
" 1.20000000e+00 -5.00000000e-01 2.77555756e-17 -6.00000000e-01\n",
|
280 |
+
" 2.77555756e-17 -4.00000000e-01 -1.00000000e+00 -7.00000000e-01\n",
|
281 |
+
" -3.00000000e-01 5.00000000e-01 -6.00000000e-01 -1.60000000e+00\n",
|
282 |
+
" -2.00000000e-01 -1.00000000e-01 -9.00000000e-01 -5.00000000e-01\n",
|
283 |
+
" 1.00000000e-01 -6.00000000e-01 -3.00000000e-01 9.00000000e-01\n",
|
284 |
+
" 4.00000000e-01 4.00000000e-01 7.00000000e-01 -1.00000000e-01\n",
|
285 |
+
" -1.00000000e-01 -3.00000000e-01 -8.00000000e-01 1.00000000e-01\n",
|
286 |
+
" 2.00000000e-01 -2.00000000e-01 -9.00000000e-01 -9.00000000e-01\n",
|
287 |
+
" -7.00000000e-01 -1.30000000e+00 -5.00000000e-01 7.00000000e-01\n",
|
288 |
+
" 1.00000000e-01 -5.00000000e-01 -6.00000000e-01 4.00000000e-01\n",
|
289 |
+
" -1.00000000e-01 -3.00000000e-01 -4.00000000e-01 2.77555756e-17\n",
|
290 |
+
" -2.00000000e-01 1.00000000e+00 1.10000000e+00 -7.00000000e-01\n",
|
291 |
+
" -1.40000000e+00 -1.40000000e+00 4.00000000e-01 1.20000000e+00\n",
|
292 |
+
" 1.10000000e+00 2.00000000e-01 -1.00000000e-01 -1.10000000e+00\n",
|
293 |
+
" 1.00000000e-01 -5.00000000e-01 -1.00000000e-01 -1.00000000e-01\n",
|
294 |
+
" 7.00000000e-01 6.00000000e-01 -4.00000000e-01 1.00000000e-01\n",
|
295 |
+
" -5.00000000e-01 2.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
296 |
+
" -1.00000000e-01 1.00000000e-01 1.00000000e-01 3.00000000e-01\n",
|
297 |
+
" 1.00000000e-01 2.77555756e-17 1.00000000e-01 2.00000000e-01\n",
|
298 |
+
" 3.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
299 |
+
" -2.77555756e-17 -2.77555756e-17 2.00000000e-01 2.00000000e-01\n",
|
300 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 2.00000000e-01\n",
|
301 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17\n",
|
302 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17\n",
|
303 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17]\n"
|
304 |
+
]
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"name": "stderr",
|
308 |
+
"output_type": "stream",
|
309 |
+
"text": [
|
310 |
+
" 60%|██████ | 3/5 [00:00<00:00, 4.37it/s]"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"name": "stdout",
|
315 |
+
"output_type": "stream",
|
316 |
+
"text": [
|
317 |
+
"Updated Weights after epoch 2 with [ 5.00000000e-01 8.00000000e-01 1.00000000e+00 1.20000000e+00\n",
|
318 |
+
" 1.00000000e-01 -4.00000000e-01 -9.00000000e-01 -5.00000000e-01\n",
|
319 |
+
" 3.00000000e-01 3.00000000e-01 1.00000000e+00 9.00000000e-01\n",
|
320 |
+
" 7.00000000e-01 8.00000000e-01 5.00000000e-01 2.00000000e-01\n",
|
321 |
+
" -5.00000000e-01 1.00000000e-01 -3.00000000e-01 -1.00000000e-01\n",
|
322 |
+
" -5.00000000e-01 -1.00000000e-01 -7.00000000e-01 -4.00000000e-01\n",
|
323 |
+
" -4.00000000e-01 8.00000000e-01 6.00000000e-01 1.70000000e+00\n",
|
324 |
+
" 1.00000000e+00 1.10000000e+00 3.00000000e-01 7.00000000e-01\n",
|
325 |
+
" -2.77555756e-17 5.00000000e-01 1.50000000e+00 1.60000000e+00\n",
|
326 |
+
" 1.00000000e+00 8.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
327 |
+
" 3.00000000e-01 1.00000000e-01 6.00000000e-01 1.10000000e+00\n",
|
328 |
+
" 8.00000000e-01 5.00000000e-01 1.00000000e-01 -2.00000000e-01\n",
|
329 |
+
" -1.00000000e+00 -1.60000000e+00 -1.00000000e-01 -3.00000000e-01\n",
|
330 |
+
" 1.00000000e-01 2.00000000e-01 6.00000000e-01 2.77555756e-17\n",
|
331 |
+
" -3.00000000e-01 -8.00000000e-01 -1.30000000e+00 -4.00000000e-01\n",
|
332 |
+
" -6.00000000e-01 -9.00000000e-01 -1.00000000e+00 -1.80000000e+00\n",
|
333 |
+
" -9.00000000e-01 -8.00000000e-01 -4.00000000e-01 -2.00000000e-01\n",
|
334 |
+
" 4.00000000e-01 1.10000000e+00 7.00000000e-01 5.00000000e-01\n",
|
335 |
+
" 6.00000000e-01 4.00000000e-01 1.50000000e+00 7.00000000e-01\n",
|
336 |
+
" -3.00000000e-01 1.30000000e+00 1.10000000e+00 1.30000000e+00\n",
|
337 |
+
" 1.30000000e+00 3.00000000e-01 7.00000000e-01 1.20000000e+00\n",
|
338 |
+
" -2.00000000e-01 -1.00000000e+00 -3.00000000e-01 -3.00000000e-01\n",
|
339 |
+
" -9.00000000e-01 -6.00000000e-01 9.00000000e-01 -2.00000000e-01\n",
|
340 |
+
" -9.00000000e-01 -8.00000000e-01 -2.10000000e+00 -2.00000000e+00\n",
|
341 |
+
" -1.30000000e+00 -1.10000000e+00 -3.00000000e-01 -3.00000000e-01\n",
|
342 |
+
" -4.00000000e-01 9.00000000e-01 1.20000000e+00 1.50000000e+00\n",
|
343 |
+
" 1.30000000e+00 6.00000000e-01 -4.00000000e-01 2.00000000e-01\n",
|
344 |
+
" 1.00000000e-01 -4.00000000e-01 -4.00000000e-01 -4.00000000e-01\n",
|
345 |
+
" 1.00000000e-01 4.00000000e-01 1.00000000e-01 -3.00000000e-01\n",
|
346 |
+
" 1.00000000e-01 2.00000000e-01 7.00000000e-01 2.77555756e-17\n",
|
347 |
+
" -1.50000000e+00 -1.40000000e+00 -1.90000000e+00 -1.10000000e+00\n",
|
348 |
+
" -1.20000000e+00 -6.00000000e-01 -6.00000000e-01 1.00000000e-01\n",
|
349 |
+
" -1.00000000e-01 -4.00000000e-01 3.00000000e-01 -1.00000000e-01\n",
|
350 |
+
" 1.00000000e-01 3.00000000e-01 2.00000000e-01 4.00000000e-01\n",
|
351 |
+
" -1.00000000e-01 9.00000000e-01 1.50000000e+00 7.00000000e-01\n",
|
352 |
+
" 1.40000000e+00 2.00000000e-01 1.00000000e-01 -2.00000000e-01\n",
|
353 |
+
" -2.00000000e-01 -6.00000000e-01 -6.00000000e-01 -1.30000000e+00\n",
|
354 |
+
" -5.00000000e-01 -1.70000000e+00 -1.90000000e+00 -1.00000000e+00\n",
|
355 |
+
" -1.40000000e+00 -8.00000000e-01 6.00000000e-01 1.00000000e+00\n",
|
356 |
+
" 2.00000000e+00 9.00000000e-01 7.00000000e-01 -1.60000000e+00\n",
|
357 |
+
" -5.00000000e-01 2.00000000e-01 8.00000000e-01 7.00000000e-01\n",
|
358 |
+
" -1.10000000e+00 -1.00000000e-01 7.00000000e-01 -2.00000000e-01\n",
|
359 |
+
" 4.00000000e-01 -2.00000000e-01 -1.00000000e-01 5.00000000e-01\n",
|
360 |
+
" 9.00000000e-01 8.00000000e-01 5.00000000e-01 2.00000000e-01\n",
|
361 |
+
" -2.00000000e-01 2.77555756e-17 -1.60000000e+00 -2.60000000e+00\n",
|
362 |
+
" -1.60000000e+00 -8.00000000e-01 6.00000000e-01 1.10000000e+00\n",
|
363 |
+
" 1.50000000e+00 1.00000000e-01 -3.00000000e-01 2.77555756e-17\n",
|
364 |
+
" 4.00000000e-01 -8.00000000e-01 -3.00000000e-01 3.00000000e-01\n",
|
365 |
+
" -1.80000000e+00 2.77555756e-17 -1.80000000e+00 -1.60000000e+00\n",
|
366 |
+
" -2.00000000e-01 5.00000000e-01 -2.00000000e-01 -1.00000000e-01\n",
|
367 |
+
" -1.50000000e+00 -1.70000000e+00 -1.80000000e+00 -1.70000000e+00\n",
|
368 |
+
" 4.00000000e-01 1.20000000e+00 2.77555756e-17 2.77555756e-17\n",
|
369 |
+
" -9.00000000e-01 -5.00000000e-01 -5.00000000e-01 -1.80000000e+00\n",
|
370 |
+
" -1.50000000e+00 -5.00000000e-01 -1.10000000e+00 -6.00000000e-01\n",
|
371 |
+
" 1.00000000e-01 -5.00000000e-01 -3.00000000e-01 -4.00000000e-01\n",
|
372 |
+
" -2.20000000e+00 -1.00000000e+00 2.00000000e-01 7.00000000e-01\n",
|
373 |
+
" 1.40000000e+00 2.00000000e+00 6.00000000e-01 4.00000000e-01\n",
|
374 |
+
" -1.00000000e+00 -1.00000000e+00 -1.10000000e+00 -3.00000000e-01\n",
|
375 |
+
" -2.10000000e+00 -5.00000000e-01 6.00000000e-01 2.00000000e-01\n",
|
376 |
+
" 1.20000000e+00 4.00000000e-01 -6.00000000e-01 -1.10000000e+00\n",
|
377 |
+
" -1.70000000e+00 -1.00000000e-01 -1.20000000e+00 -3.00000000e-01\n",
|
378 |
+
" 1.80000000e+00 9.00000000e-01 1.90000000e+00 5.00000000e-01\n",
|
379 |
+
" -1.10000000e+00 1.00000000e-01 3.00000000e-01 -2.00000000e-01\n",
|
380 |
+
" 2.00000000e-01 1.10000000e+00 -2.77555756e-17 -6.00000000e-01\n",
|
381 |
+
" -2.00000000e-01 1.00000000e+00 1.10000000e+00 8.00000000e-01\n",
|
382 |
+
" -1.00000000e-01 -3.00000000e-01 -1.00000000e+00 -2.00000000e-01\n",
|
383 |
+
" 1.50000000e+00 5.00000000e-01 6.00000000e-01 2.00000000e+00\n",
|
384 |
+
" -5.00000000e-01 -1.80000000e+00 -1.40000000e+00 -5.00000000e-01\n",
|
385 |
+
" -7.00000000e-01 -9.00000000e-01 -1.40000000e+00 -1.70000000e+00\n",
|
386 |
+
" -7.00000000e-01 3.10000000e+00 3.10000000e+00 1.70000000e+00\n",
|
387 |
+
" -1.70000000e+00 -7.00000000e-01 9.00000000e-01 1.00000000e-01\n",
|
388 |
+
" -4.00000000e-01 -1.50000000e+00 -7.00000000e-01 -4.00000000e-01\n",
|
389 |
+
" -1.00000000e-01 8.00000000e-01 -1.00000000e-01 -4.00000000e-01\n",
|
390 |
+
" 1.10000000e+00 3.00000000e-01 3.00000000e-01 1.50000000e+00\n",
|
391 |
+
" 1.50000000e+00 -1.00000000e+00 -7.00000000e-01 4.00000000e-01\n",
|
392 |
+
" -1.70000000e+00 -2.00000000e-01 -1.40000000e+00 2.00000000e+00\n",
|
393 |
+
" -3.00000000e-01 6.00000000e-01 1.80000000e+00 1.00000000e-01\n",
|
394 |
+
" 3.00000000e-01 -7.00000000e-01 -1.00000000e+00 1.50000000e+00\n",
|
395 |
+
" -1.00000000e-01 -5.00000000e-01 6.00000000e-01 2.00000000e-01\n",
|
396 |
+
" -1.20000000e+00 -2.20000000e+00 -1.20000000e+00 -4.00000000e-01\n",
|
397 |
+
" -7.00000000e-01 -9.00000000e-01 -4.00000000e-01 2.77555756e-17\n",
|
398 |
+
" 9.00000000e-01 -6.00000000e-01 -1.40000000e+00 1.00000000e+00\n",
|
399 |
+
" -9.00000000e-01 -1.30000000e+00 -1.20000000e+00 2.00000000e-01\n",
|
400 |
+
" 1.10000000e+00 1.00000000e-01 -1.30000000e+00 -1.00000000e-01\n",
|
401 |
+
" -6.00000000e-01 2.77555756e-17 8.00000000e-01 6.00000000e-01\n",
|
402 |
+
" -6.00000000e-01 -5.00000000e-01 -1.10000000e+00 -3.00000000e-01\n",
|
403 |
+
" 4.00000000e-01 1.00000000e-01 2.00000000e+00 -1.00000000e+00\n",
|
404 |
+
" 7.00000000e-01 -5.00000000e-01 -8.00000000e-01 2.70000000e+00\n",
|
405 |
+
" 2.00000000e-01 1.00000000e+00 -1.00000000e+00 1.00000000e+00\n",
|
406 |
+
" -9.00000000e-01 4.00000000e-01 4.00000000e-01 -1.10000000e+00\n",
|
407 |
+
" -1.20000000e+00 1.40000000e+00 -1.10000000e+00 -5.00000000e-01\n",
|
408 |
+
" -4.00000000e-01 -1.00000000e-01 2.00000000e-01 -4.00000000e-01\n",
|
409 |
+
" 1.60000000e+00 1.60000000e+00 -4.00000000e-01 -5.00000000e-01\n",
|
410 |
+
" -2.00000000e+00 1.00000000e-01 -1.40000000e+00 -4.00000000e-01\n",
|
411 |
+
" -1.90000000e+00 -1.10000000e+00 2.90000000e+00 -2.00000000e-01\n",
|
412 |
+
" 2.77555756e-17 3.00000000e-01 -7.00000000e-01 -1.50000000e+00\n",
|
413 |
+
" 1.50000000e+00 6.00000000e-01 3.00000000e-01 -1.50000000e+00\n",
|
414 |
+
" 1.40000000e+00 1.70000000e+00 -1.20000000e+00 -1.60000000e+00\n",
|
415 |
+
" 1.00000000e-01 2.10000000e+00 -2.00000000e-01 -9.00000000e-01\n",
|
416 |
+
" -3.00000000e-01 1.30000000e+00 2.00000000e-01 1.30000000e+00\n",
|
417 |
+
" 1.40000000e+00 -5.00000000e-01 -1.00000000e-01 -7.00000000e-01\n",
|
418 |
+
" 2.00000000e-01 -3.00000000e-01 -1.00000000e+00 -5.00000000e-01\n",
|
419 |
+
" -5.00000000e-01 9.00000000e-01 -7.00000000e-01 -1.90000000e+00\n",
|
420 |
+
" -1.00000000e-01 1.00000000e-01 -1.20000000e+00 -5.00000000e-01\n",
|
421 |
+
" 2.77555756e-17 -6.00000000e-01 -3.00000000e-01 1.00000000e+00\n",
|
422 |
+
" 3.00000000e-01 3.00000000e-01 1.20000000e+00 -3.00000000e-01\n",
|
423 |
+
" 2.00000000e-01 -2.77555756e-17 -1.00000000e+00 -1.00000000e-01\n",
|
424 |
+
" 3.00000000e-01 1.00000000e-01 -6.00000000e-01 -8.00000000e-01\n",
|
425 |
+
" -6.00000000e-01 -1.50000000e+00 -4.00000000e-01 1.10000000e+00\n",
|
426 |
+
" 3.00000000e-01 -6.00000000e-01 -1.20000000e+00 2.00000000e-01\n",
|
427 |
+
" -1.00000000e-01 -2.00000000e-01 -3.00000000e-01 4.00000000e-01\n",
|
428 |
+
" -3.00000000e-01 1.40000000e+00 1.50000000e+00 -7.00000000e-01\n",
|
429 |
+
" -1.80000000e+00 -2.00000000e+00 5.00000000e-01 1.10000000e+00\n",
|
430 |
+
" 1.10000000e+00 1.00000000e-01 1.00000000e-01 -9.00000000e-01\n",
|
431 |
+
" 4.00000000e-01 -6.00000000e-01 -2.00000000e-01 -3.00000000e-01\n",
|
432 |
+
" 8.00000000e-01 6.00000000e-01 -8.00000000e-01 2.77555756e-17\n",
|
433 |
+
" -7.00000000e-01 4.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
434 |
+
" -1.00000000e-01 1.00000000e-01 2.00000000e-01 5.00000000e-01\n",
|
435 |
+
" 3.00000000e-01 1.00000000e-01 1.00000000e-01 3.00000000e-01\n",
|
436 |
+
" 4.00000000e-01 3.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
437 |
+
" -1.00000000e-01 -1.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
438 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 3.00000000e-01\n",
|
439 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
440 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
441 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01]\n"
|
442 |
+
]
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"name": "stderr",
|
446 |
+
"output_type": "stream",
|
447 |
+
"text": [
|
448 |
+
" 80%|████████ | 4/5 [00:00<00:00, 4.36it/s]"
|
449 |
+
]
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"name": "stdout",
|
453 |
+
"output_type": "stream",
|
454 |
+
"text": [
|
455 |
+
"Updated Weights after epoch 3 with [-2.77555756e-17 4.00000000e-01 7.00000000e-01 1.00000000e+00\n",
|
456 |
+
" -4.00000000e-01 -1.00000000e+00 -1.70000000e+00 -1.20000000e+00\n",
|
457 |
+
" -1.00000000e-01 -1.00000000e-01 9.00000000e-01 9.00000000e-01\n",
|
458 |
+
" 6.00000000e-01 7.00000000e-01 1.00000000e-01 -3.00000000e-01\n",
|
459 |
+
" -1.00000000e+00 -1.00000000e-01 -6.00000000e-01 -2.00000000e-01\n",
|
460 |
+
" -6.00000000e-01 -2.00000000e-01 -1.10000000e+00 -7.00000000e-01\n",
|
461 |
+
" -7.00000000e-01 1.00000000e+00 6.00000000e-01 2.00000000e+00\n",
|
462 |
+
" 1.20000000e+00 1.20000000e+00 2.00000000e-01 7.00000000e-01\n",
|
463 |
+
" -3.00000000e-01 3.00000000e-01 1.70000000e+00 1.80000000e+00\n",
|
464 |
+
" 1.10000000e+00 9.00000000e-01 2.00000000e-01 1.00000000e-01\n",
|
465 |
+
" 3.00000000e-01 2.00000000e-01 8.00000000e-01 1.50000000e+00\n",
|
466 |
+
" 1.20000000e+00 7.00000000e-01 1.00000000e-01 -2.00000000e-01\n",
|
467 |
+
" -1.40000000e+00 -2.10000000e+00 -1.00000000e-01 -4.00000000e-01\n",
|
468 |
+
" 2.00000000e-01 3.00000000e-01 8.00000000e-01 2.77555756e-17\n",
|
469 |
+
" -3.00000000e-01 -9.00000000e-01 -1.60000000e+00 -5.00000000e-01\n",
|
470 |
+
" -7.00000000e-01 -1.10000000e+00 -1.20000000e+00 -2.30000000e+00\n",
|
471 |
+
" -1.20000000e+00 -1.10000000e+00 -5.00000000e-01 -3.00000000e-01\n",
|
472 |
+
" 6.00000000e-01 1.50000000e+00 9.00000000e-01 4.00000000e-01\n",
|
473 |
+
" 5.00000000e-01 2.00000000e-01 1.70000000e+00 5.00000000e-01\n",
|
474 |
+
" -9.00000000e-01 1.30000000e+00 9.00000000e-01 1.40000000e+00\n",
|
475 |
+
" 1.40000000e+00 2.00000000e-01 7.00000000e-01 1.50000000e+00\n",
|
476 |
+
" -4.00000000e-01 -1.20000000e+00 -2.00000000e-01 -1.00000000e-01\n",
|
477 |
+
" -9.00000000e-01 -4.00000000e-01 1.60000000e+00 3.00000000e-01\n",
|
478 |
+
" -7.00000000e-01 -5.00000000e-01 -2.20000000e+00 -2.00000000e+00\n",
|
479 |
+
" -9.00000000e-01 -7.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
480 |
+
" -2.00000000e-01 1.30000000e+00 1.60000000e+00 1.80000000e+00\n",
|
481 |
+
" 1.70000000e+00 8.00000000e-01 -5.00000000e-01 2.00000000e-01\n",
|
482 |
+
" 1.00000000e-01 -4.00000000e-01 -3.00000000e-01 -5.00000000e-01\n",
|
483 |
+
" 1.00000000e-01 6.00000000e-01 1.00000000e-01 -4.00000000e-01\n",
|
484 |
+
" 2.00000000e-01 4.00000000e-01 1.10000000e+00 4.00000000e-01\n",
|
485 |
+
" -1.40000000e+00 -1.30000000e+00 -1.80000000e+00 -5.00000000e-01\n",
|
486 |
+
" -8.00000000e-01 1.00000000e-01 -2.00000000e-01 8.00000000e-01\n",
|
487 |
+
" 6.00000000e-01 -1.00000000e-01 7.00000000e-01 1.00000000e-01\n",
|
488 |
+
" 3.00000000e-01 6.00000000e-01 5.00000000e-01 7.00000000e-01\n",
|
489 |
+
" -2.77555756e-17 1.60000000e+00 2.30000000e+00 1.50000000e+00\n",
|
490 |
+
" 2.20000000e+00 7.00000000e-01 6.00000000e-01 4.00000000e-01\n",
|
491 |
+
" 6.00000000e-01 2.00000000e-01 1.00000000e-01 -7.00000000e-01\n",
|
492 |
+
" 4.00000000e-01 -1.50000000e+00 -1.90000000e+00 -9.00000000e-01\n",
|
493 |
+
" -1.50000000e+00 -7.00000000e-01 1.00000000e+00 1.80000000e+00\n",
|
494 |
+
" 2.70000000e+00 1.10000000e+00 6.00000000e-01 -2.20000000e+00\n",
|
495 |
+
" -8.00000000e-01 1.00000000e-01 8.00000000e-01 8.00000000e-01\n",
|
496 |
+
" -1.90000000e+00 -4.00000000e-01 6.00000000e-01 -5.00000000e-01\n",
|
497 |
+
" 3.00000000e-01 -4.00000000e-01 -3.00000000e-01 5.00000000e-01\n",
|
498 |
+
" 1.10000000e+00 8.00000000e-01 4.00000000e-01 -3.00000000e-01\n",
|
499 |
+
" -7.00000000e-01 -2.00000000e-01 -2.00000000e+00 -3.20000000e+00\n",
|
500 |
+
" -2.10000000e+00 -1.00000000e+00 7.00000000e-01 1.20000000e+00\n",
|
501 |
+
" 1.60000000e+00 -3.00000000e-01 -9.00000000e-01 -2.00000000e-01\n",
|
502 |
+
" 5.00000000e-01 -9.00000000e-01 -1.00000000e-01 1.00000000e+00\n",
|
503 |
+
" -1.60000000e+00 1.00000000e+00 -1.60000000e+00 -1.50000000e+00\n",
|
504 |
+
" 2.00000000e-01 9.00000000e-01 -1.00000000e-01 1.00000000e-01\n",
|
505 |
+
" -2.00000000e+00 -2.30000000e+00 -2.30000000e+00 -2.00000000e+00\n",
|
506 |
+
" 5.00000000e-01 1.60000000e+00 1.00000000e-01 2.77555756e-17\n",
|
507 |
+
" -1.10000000e+00 -4.00000000e-01 -6.00000000e-01 -2.30000000e+00\n",
|
508 |
+
" -2.00000000e+00 -7.00000000e-01 -1.50000000e+00 -9.00000000e-01\n",
|
509 |
+
" -2.00000000e-01 -8.00000000e-01 -4.00000000e-01 -4.00000000e-01\n",
|
510 |
+
" -2.50000000e+00 -1.00000000e+00 1.00000000e-01 8.00000000e-01\n",
|
511 |
+
" 1.40000000e+00 2.20000000e+00 5.00000000e-01 3.00000000e-01\n",
|
512 |
+
" -1.40000000e+00 -1.20000000e+00 -1.20000000e+00 -1.00000000e-01\n",
|
513 |
+
" -2.70000000e+00 -1.00000000e+00 3.00000000e-01 -2.00000000e-01\n",
|
514 |
+
" 1.70000000e+00 8.00000000e-01 -6.00000000e-01 -1.10000000e+00\n",
|
515 |
+
" -1.70000000e+00 7.00000000e-01 -7.00000000e-01 2.00000000e-01\n",
|
516 |
+
" 2.40000000e+00 1.10000000e+00 1.80000000e+00 4.00000000e-01\n",
|
517 |
+
" -1.70000000e+00 -2.00000000e-01 5.00000000e-01 -3.00000000e-01\n",
|
518 |
+
" 1.00000000e-01 1.30000000e+00 -3.00000000e-01 -9.00000000e-01\n",
|
519 |
+
" -3.00000000e-01 1.30000000e+00 1.40000000e+00 1.30000000e+00\n",
|
520 |
+
" 3.00000000e-01 2.00000000e-01 -8.00000000e-01 -2.00000000e-01\n",
|
521 |
+
" 1.70000000e+00 5.00000000e-01 6.00000000e-01 2.70000000e+00\n",
|
522 |
+
" -3.00000000e-01 -1.70000000e+00 -1.40000000e+00 -3.00000000e-01\n",
|
523 |
+
" -4.00000000e-01 -7.00000000e-01 -1.50000000e+00 -2.10000000e+00\n",
|
524 |
+
" -1.00000000e+00 3.80000000e+00 3.60000000e+00 1.80000000e+00\n",
|
525 |
+
" -2.20000000e+00 -9.00000000e-01 1.30000000e+00 3.00000000e-01\n",
|
526 |
+
" -2.77555756e-17 -1.40000000e+00 -7.00000000e-01 -6.00000000e-01\n",
|
527 |
+
" 2.77555756e-17 1.10000000e+00 -3.00000000e-01 -9.00000000e-01\n",
|
528 |
+
" 1.20000000e+00 2.00000000e-01 1.00000000e-01 2.30000000e+00\n",
|
529 |
+
" 2.40000000e+00 -1.30000000e+00 -1.20000000e+00 1.00000000e+00\n",
|
530 |
+
" -1.80000000e+00 3.00000000e-01 -1.60000000e+00 2.40000000e+00\n",
|
531 |
+
" -8.00000000e-01 2.00000000e-01 1.90000000e+00 -1.00000000e-01\n",
|
532 |
+
" 7.00000000e-01 -8.00000000e-01 -1.10000000e+00 1.90000000e+00\n",
|
533 |
+
" -2.00000000e-01 -7.00000000e-01 1.20000000e+00 6.00000000e-01\n",
|
534 |
+
" -1.10000000e+00 -2.30000000e+00 -8.00000000e-01 -2.77555756e-17\n",
|
535 |
+
" -5.00000000e-01 -6.00000000e-01 -2.00000000e-01 -2.00000000e-01\n",
|
536 |
+
" 7.00000000e-01 -5.00000000e-01 -1.30000000e+00 1.50000000e+00\n",
|
537 |
+
" -8.00000000e-01 -1.20000000e+00 -1.00000000e+00 5.00000000e-01\n",
|
538 |
+
" 1.70000000e+00 6.00000000e-01 -1.00000000e+00 -2.00000000e-01\n",
|
539 |
+
" -7.00000000e-01 -2.00000000e-01 1.00000000e+00 8.00000000e-01\n",
|
540 |
+
" -7.00000000e-01 -3.00000000e-01 -1.30000000e+00 -5.00000000e-01\n",
|
541 |
+
" 3.00000000e-01 4.00000000e-01 2.70000000e+00 -1.10000000e+00\n",
|
542 |
+
" 1.00000000e+00 -7.00000000e-01 -1.00000000e+00 2.70000000e+00\n",
|
543 |
+
" -1.00000000e-01 1.70000000e+00 -1.20000000e+00 1.40000000e+00\n",
|
544 |
+
" -8.00000000e-01 1.20000000e+00 1.10000000e+00 -9.00000000e-01\n",
|
545 |
+
" -1.20000000e+00 1.60000000e+00 -1.30000000e+00 -5.00000000e-01\n",
|
546 |
+
" -5.00000000e-01 3.00000000e-01 1.00000000e-01 -9.00000000e-01\n",
|
547 |
+
" 1.50000000e+00 1.20000000e+00 -8.00000000e-01 -4.00000000e-01\n",
|
548 |
+
" -2.10000000e+00 6.00000000e-01 -1.00000000e+00 -1.00000000e-01\n",
|
549 |
+
" -2.10000000e+00 -1.50000000e+00 3.30000000e+00 -3.00000000e-01\n",
|
550 |
+
" -2.00000000e-01 6.00000000e-01 -7.00000000e-01 -1.60000000e+00\n",
|
551 |
+
" 1.60000000e+00 2.77555756e-17 -2.77555756e-17 -1.90000000e+00\n",
|
552 |
+
" 1.50000000e+00 2.10000000e+00 -1.30000000e+00 -1.60000000e+00\n",
|
553 |
+
" 1.00000000e-01 2.40000000e+00 -3.00000000e-01 -9.00000000e-01\n",
|
554 |
+
" -4.00000000e-01 1.70000000e+00 2.00000000e-01 1.60000000e+00\n",
|
555 |
+
" 1.60000000e+00 -4.00000000e-01 2.77555756e-17 -9.00000000e-01\n",
|
556 |
+
" 3.00000000e-01 -3.00000000e-01 -1.30000000e+00 -5.00000000e-01\n",
|
557 |
+
" -2.00000000e-01 1.50000000e+00 -8.00000000e-01 -2.60000000e+00\n",
|
558 |
+
" -4.00000000e-01 -2.00000000e-01 -1.60000000e+00 -5.00000000e-01\n",
|
559 |
+
" 2.77555756e-17 -1.20000000e+00 -5.00000000e-01 1.10000000e+00\n",
|
560 |
+
" 2.77555756e-17 1.00000000e-01 1.40000000e+00 -3.00000000e-01\n",
|
561 |
+
" -2.77555756e-17 -1.00000000e-01 -1.20000000e+00 3.00000000e-01\n",
|
562 |
+
" 8.00000000e-01 4.00000000e-01 -5.00000000e-01 -9.00000000e-01\n",
|
563 |
+
" -7.00000000e-01 -1.80000000e+00 -6.00000000e-01 1.30000000e+00\n",
|
564 |
+
" 6.00000000e-01 -4.00000000e-01 -1.10000000e+00 6.00000000e-01\n",
|
565 |
+
" 1.00000000e-01 -1.00000000e-01 -4.00000000e-01 4.00000000e-01\n",
|
566 |
+
" -7.00000000e-01 1.40000000e+00 1.70000000e+00 -1.20000000e+00\n",
|
567 |
+
" -1.90000000e+00 -2.30000000e+00 2.00000000e-01 1.40000000e+00\n",
|
568 |
+
" 1.50000000e+00 2.00000000e-01 2.77555756e-17 -1.00000000e+00\n",
|
569 |
+
" 1.00000000e+00 -5.00000000e-01 -2.00000000e-01 -3.00000000e-01\n",
|
570 |
+
" 1.10000000e+00 8.00000000e-01 -1.10000000e+00 -2.00000000e-01\n",
|
571 |
+
" -1.10000000e+00 3.00000000e-01 2.00000000e-01 1.00000000e-01\n",
|
572 |
+
" -3.00000000e-01 -1.00000000e-01 1.00000000e-01 4.00000000e-01\n",
|
573 |
+
" 3.00000000e-01 1.00000000e-01 2.00000000e-01 5.00000000e-01\n",
|
574 |
+
" 6.00000000e-01 4.00000000e-01 4.00000000e-01 3.00000000e-01\n",
|
575 |
+
" -1.00000000e-01 -2.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
576 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 4.00000000e-01\n",
|
577 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
578 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
579 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01]\n"
|
580 |
+
]
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"name": "stderr",
|
584 |
+
"output_type": "stream",
|
585 |
+
"text": [
|
586 |
+
"100%|██████████| 5/5 [00:01<00:00, 4.33it/s]"
|
587 |
+
]
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"name": "stdout",
|
591 |
+
"output_type": "stream",
|
592 |
+
"text": [
|
593 |
+
"Updated Weights after epoch 4 with [ 2.00000000e-01 6.00000000e-01 1.10000000e+00 1.40000000e+00\n",
|
594 |
+
" -2.00000000e-01 -9.00000000e-01 -1.80000000e+00 -1.10000000e+00\n",
|
595 |
+
" 1.00000000e-01 1.00000000e-01 1.20000000e+00 1.20000000e+00\n",
|
596 |
+
" 8.00000000e-01 1.00000000e+00 5.00000000e-01 -2.77555756e-17\n",
|
597 |
+
" -1.00000000e+00 2.00000000e-01 -4.00000000e-01 -2.00000000e-01\n",
|
598 |
+
" -8.00000000e-01 -3.00000000e-01 -1.50000000e+00 -1.10000000e+00\n",
|
599 |
+
" -1.00000000e+00 1.10000000e+00 5.00000000e-01 2.30000000e+00\n",
|
600 |
+
" 1.30000000e+00 1.30000000e+00 -2.77555756e-17 7.00000000e-01\n",
|
601 |
+
" -4.00000000e-01 1.00000000e-01 1.40000000e+00 1.70000000e+00\n",
|
602 |
+
" 9.00000000e-01 7.00000000e-01 -1.00000000e-01 -3.00000000e-01\n",
|
603 |
+
" -2.77555756e-17 -1.00000000e-01 6.00000000e-01 1.30000000e+00\n",
|
604 |
+
" 1.00000000e+00 5.00000000e-01 -3.00000000e-01 -5.00000000e-01\n",
|
605 |
+
" -2.10000000e+00 -3.00000000e+00 -2.00000000e-01 -6.00000000e-01\n",
|
606 |
+
" 1.00000000e-01 2.00000000e-01 9.00000000e-01 2.77555756e-17\n",
|
607 |
+
" -4.00000000e-01 -1.00000000e+00 -1.80000000e+00 -4.00000000e-01\n",
|
608 |
+
" -5.00000000e-01 -1.00000000e+00 -1.20000000e+00 -2.60000000e+00\n",
|
609 |
+
" -1.10000000e+00 -9.00000000e-01 -1.00000000e-01 2.77555756e-17\n",
|
610 |
+
" 1.10000000e+00 2.20000000e+00 1.20000000e+00 5.00000000e-01\n",
|
611 |
+
" 5.00000000e-01 1.00000000e-01 1.60000000e+00 1.00000000e-01\n",
|
612 |
+
" -1.80000000e+00 1.10000000e+00 9.00000000e-01 1.30000000e+00\n",
|
613 |
+
" 1.30000000e+00 -1.00000000e-01 7.00000000e-01 1.80000000e+00\n",
|
614 |
+
" -4.00000000e-01 -1.50000000e+00 -2.00000000e-01 2.77555756e-17\n",
|
615 |
+
" -1.00000000e+00 -4.00000000e-01 2.10000000e+00 4.00000000e-01\n",
|
616 |
+
" -8.00000000e-01 -6.00000000e-01 -2.80000000e+00 -2.50000000e+00\n",
|
617 |
+
" -1.30000000e+00 -1.00000000e+00 3.00000000e-01 2.77555756e-17\n",
|
618 |
+
" -8.00000000e-01 9.00000000e-01 1.20000000e+00 1.30000000e+00\n",
|
619 |
+
" 1.40000000e+00 5.00000000e-01 -7.00000000e-01 1.00000000e-01\n",
|
620 |
+
" 2.77555756e-17 -7.00000000e-01 -4.00000000e-01 -5.00000000e-01\n",
|
621 |
+
" 4.00000000e-01 7.00000000e-01 2.00000000e-01 -4.00000000e-01\n",
|
622 |
+
" 3.00000000e-01 6.00000000e-01 1.40000000e+00 5.00000000e-01\n",
|
623 |
+
" -1.70000000e+00 -1.50000000e+00 -2.10000000e+00 -8.00000000e-01\n",
|
624 |
+
" -9.00000000e-01 1.00000000e-01 -6.00000000e-01 6.00000000e-01\n",
|
625 |
+
" 3.00000000e-01 -8.00000000e-01 5.00000000e-01 -3.00000000e-01\n",
|
626 |
+
" -2.00000000e-01 3.00000000e-01 -2.77555756e-17 2.00000000e-01\n",
|
627 |
+
" -7.00000000e-01 1.30000000e+00 2.20000000e+00 1.20000000e+00\n",
|
628 |
+
" 2.00000000e+00 1.00000000e-01 -1.00000000e-01 -4.00000000e-01\n",
|
629 |
+
" 1.00000000e-01 -2.00000000e-01 -4.00000000e-01 -1.20000000e+00\n",
|
630 |
+
" 3.00000000e-01 -1.90000000e+00 -2.20000000e+00 -1.00000000e+00\n",
|
631 |
+
" -2.00000000e+00 -1.20000000e+00 8.00000000e-01 1.70000000e+00\n",
|
632 |
+
" 2.70000000e+00 7.00000000e-01 2.00000000e-01 -3.30000000e+00\n",
|
633 |
+
" -1.30000000e+00 -1.00000000e-01 6.00000000e-01 7.00000000e-01\n",
|
634 |
+
" -2.20000000e+00 -2.00000000e-01 8.00000000e-01 -6.00000000e-01\n",
|
635 |
+
" 4.00000000e-01 -6.00000000e-01 -4.00000000e-01 6.00000000e-01\n",
|
636 |
+
" 1.10000000e+00 7.00000000e-01 3.00000000e-01 -5.00000000e-01\n",
|
637 |
+
" -1.10000000e+00 -5.00000000e-01 -2.60000000e+00 -3.80000000e+00\n",
|
638 |
+
" -2.50000000e+00 -1.10000000e+00 1.00000000e+00 1.30000000e+00\n",
|
639 |
+
" 1.70000000e+00 -6.00000000e-01 -1.10000000e+00 -2.00000000e-01\n",
|
640 |
+
" 7.00000000e-01 -1.20000000e+00 2.77555756e-17 1.20000000e+00\n",
|
641 |
+
" -2.00000000e+00 1.20000000e+00 -2.00000000e+00 -1.90000000e+00\n",
|
642 |
+
" 3.00000000e-01 1.20000000e+00 2.77555756e-17 3.00000000e-01\n",
|
643 |
+
" -2.30000000e+00 -2.60000000e+00 -2.60000000e+00 -2.30000000e+00\n",
|
644 |
+
" 7.00000000e-01 2.40000000e+00 6.00000000e-01 6.00000000e-01\n",
|
645 |
+
" -9.00000000e-01 1.00000000e-01 -3.00000000e-01 -2.40000000e+00\n",
|
646 |
+
" -1.80000000e+00 -2.00000000e-01 -1.20000000e+00 -3.00000000e-01\n",
|
647 |
+
" 5.00000000e-01 -8.00000000e-01 -3.00000000e-01 -4.00000000e-01\n",
|
648 |
+
" -3.10000000e+00 -1.20000000e+00 1.00000000e-01 8.00000000e-01\n",
|
649 |
+
" 1.50000000e+00 2.60000000e+00 6.00000000e-01 2.00000000e-01\n",
|
650 |
+
" -1.60000000e+00 -1.10000000e+00 -1.20000000e+00 1.00000000e-01\n",
|
651 |
+
" -3.30000000e+00 -1.30000000e+00 1.00000000e-01 -5.00000000e-01\n",
|
652 |
+
" 2.00000000e+00 7.00000000e-01 -1.00000000e+00 -1.90000000e+00\n",
|
653 |
+
" -2.40000000e+00 5.00000000e-01 -1.10000000e+00 -1.00000000e-01\n",
|
654 |
+
" 2.50000000e+00 1.30000000e+00 2.20000000e+00 3.00000000e-01\n",
|
655 |
+
" -2.20000000e+00 -2.00000000e-01 9.00000000e-01 -1.00000000e-01\n",
|
656 |
+
" 3.00000000e-01 1.50000000e+00 -2.00000000e-01 -1.40000000e+00\n",
|
657 |
+
" -6.00000000e-01 8.00000000e-01 1.10000000e+00 1.00000000e+00\n",
|
658 |
+
" -4.00000000e-01 -4.00000000e-01 -1.40000000e+00 -3.00000000e-01\n",
|
659 |
+
" 1.50000000e+00 2.00000000e-01 6.00000000e-01 3.10000000e+00\n",
|
660 |
+
" -7.00000000e-01 -2.30000000e+00 -1.60000000e+00 -2.00000000e-01\n",
|
661 |
+
" -3.00000000e-01 -2.00000000e-01 -1.20000000e+00 -1.90000000e+00\n",
|
662 |
+
" -6.00000000e-01 4.50000000e+00 3.90000000e+00 1.90000000e+00\n",
|
663 |
+
" -2.70000000e+00 -1.40000000e+00 1.00000000e+00 -2.00000000e-01\n",
|
664 |
+
" -3.00000000e-01 -1.60000000e+00 -8.00000000e-01 -9.00000000e-01\n",
|
665 |
+
" -1.00000000e-01 1.20000000e+00 -2.00000000e-01 -1.10000000e+00\n",
|
666 |
+
" 1.30000000e+00 -2.00000000e-01 -5.00000000e-01 2.40000000e+00\n",
|
667 |
+
" 2.70000000e+00 -1.80000000e+00 -1.40000000e+00 9.00000000e-01\n",
|
668 |
+
" -2.00000000e+00 4.00000000e-01 -1.80000000e+00 2.70000000e+00\n",
|
669 |
+
" -7.00000000e-01 7.00000000e-01 2.70000000e+00 -2.00000000e-01\n",
|
670 |
+
" 8.00000000e-01 -9.00000000e-01 -1.40000000e+00 2.10000000e+00\n",
|
671 |
+
" -5.00000000e-01 -1.20000000e+00 1.10000000e+00 5.00000000e-01\n",
|
672 |
+
" -1.10000000e+00 -1.90000000e+00 -6.00000000e-01 -1.00000000e-01\n",
|
673 |
+
" -8.00000000e-01 -7.00000000e-01 -3.00000000e-01 -2.00000000e-01\n",
|
674 |
+
" 8.00000000e-01 -4.00000000e-01 -1.30000000e+00 2.30000000e+00\n",
|
675 |
+
" -5.00000000e-01 -1.00000000e+00 -9.00000000e-01 7.00000000e-01\n",
|
676 |
+
" 2.00000000e+00 2.00000000e-01 -1.40000000e+00 -3.00000000e-01\n",
|
677 |
+
" -5.00000000e-01 -4.00000000e-01 5.00000000e-01 6.00000000e-01\n",
|
678 |
+
" -1.00000000e+00 -3.00000000e-01 -1.10000000e+00 -3.00000000e-01\n",
|
679 |
+
" 4.00000000e-01 -2.77555756e-17 2.80000000e+00 -1.50000000e+00\n",
|
680 |
+
" 7.00000000e-01 -9.00000000e-01 -9.00000000e-01 3.00000000e+00\n",
|
681 |
+
" -4.00000000e-01 1.80000000e+00 -1.60000000e+00 1.40000000e+00\n",
|
682 |
+
" -1.20000000e+00 9.00000000e-01 1.20000000e+00 -1.70000000e+00\n",
|
683 |
+
" -1.60000000e+00 1.50000000e+00 -1.50000000e+00 -3.00000000e-01\n",
|
684 |
+
" -6.00000000e-01 8.00000000e-01 1.00000000e+00 -7.00000000e-01\n",
|
685 |
+
" 1.80000000e+00 1.10000000e+00 -1.40000000e+00 -2.00000000e-01\n",
|
686 |
+
" -2.10000000e+00 6.00000000e-01 -1.10000000e+00 -3.00000000e-01\n",
|
687 |
+
" -2.00000000e+00 -1.60000000e+00 3.60000000e+00 -6.00000000e-01\n",
|
688 |
+
" -8.00000000e-01 4.00000000e-01 -9.00000000e-01 -1.80000000e+00\n",
|
689 |
+
" 2.10000000e+00 3.00000000e-01 5.00000000e-01 -1.90000000e+00\n",
|
690 |
+
" 1.50000000e+00 2.30000000e+00 -1.60000000e+00 -1.90000000e+00\n",
|
691 |
+
" 3.00000000e-01 2.50000000e+00 -5.00000000e-01 -1.40000000e+00\n",
|
692 |
+
" -1.00000000e+00 1.60000000e+00 -2.00000000e-01 1.40000000e+00\n",
|
693 |
+
" 1.30000000e+00 -1.10000000e+00 -2.00000000e-01 -1.10000000e+00\n",
|
694 |
+
" 4.00000000e-01 -3.00000000e-01 -1.30000000e+00 -6.00000000e-01\n",
|
695 |
+
" -4.00000000e-01 2.00000000e+00 -6.00000000e-01 -2.40000000e+00\n",
|
696 |
+
" 1.00000000e-01 5.00000000e-01 -1.50000000e+00 -1.00000000e-01\n",
|
697 |
+
" 5.00000000e-01 -1.00000000e+00 -4.00000000e-01 1.50000000e+00\n",
|
698 |
+
" -1.00000000e-01 -1.00000000e-01 1.40000000e+00 -6.00000000e-01\n",
|
699 |
+
" -3.00000000e-01 -1.00000000e-01 -1.50000000e+00 2.77555756e-17\n",
|
700 |
+
" 4.00000000e-01 1.00000000e-01 -9.00000000e-01 -1.10000000e+00\n",
|
701 |
+
" -8.00000000e-01 -1.70000000e+00 -3.00000000e-01 1.90000000e+00\n",
|
702 |
+
" 6.00000000e-01 -4.00000000e-01 -1.10000000e+00 9.00000000e-01\n",
|
703 |
+
" -2.00000000e-01 -7.00000000e-01 -1.00000000e+00 3.00000000e-01\n",
|
704 |
+
" -8.00000000e-01 1.50000000e+00 2.10000000e+00 -1.10000000e+00\n",
|
705 |
+
" -1.90000000e+00 -2.40000000e+00 4.00000000e-01 1.50000000e+00\n",
|
706 |
+
" 1.40000000e+00 -3.00000000e-01 -5.00000000e-01 -1.50000000e+00\n",
|
707 |
+
" 1.00000000e+00 -4.00000000e-01 -2.77555756e-17 -1.00000000e-01\n",
|
708 |
+
" 1.20000000e+00 9.00000000e-01 -1.40000000e+00 -4.00000000e-01\n",
|
709 |
+
" -1.40000000e+00 4.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
710 |
+
" -3.00000000e-01 -3.00000000e-01 -1.00000000e-01 2.00000000e-01\n",
|
711 |
+
" 1.00000000e-01 -2.00000000e-01 -2.77555756e-17 4.00000000e-01\n",
|
712 |
+
" 5.00000000e-01 2.00000000e-01 2.00000000e-01 1.00000000e-01\n",
|
713 |
+
" -4.00000000e-01 -5.00000000e-01 -2.77555756e-17 -2.77555756e-17\n",
|
714 |
+
" -1.00000000e-01 -1.00000000e-01 -1.00000000e-01 3.00000000e-01\n",
|
715 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17\n",
|
716 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17\n",
|
717 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17]\n",
|
718 |
+
"Training Completed\n",
|
719 |
+
"Accuracy: 49.99%\n"
|
720 |
+
]
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"name": "stderr",
|
724 |
+
"output_type": "stream",
|
725 |
+
"text": [
|
726 |
+
"\n"
|
727 |
+
]
|
728 |
+
}
|
729 |
+
],
|
730 |
+
"source": [
|
731 |
+
"# Load the IMDB dataset\n",
|
732 |
+
"top_words = 5000\n",
|
733 |
+
"(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words)\n",
|
734 |
+
"\n",
|
735 |
+
"# Truncate and pad input sequences\n",
|
736 |
+
"max_review_length = 500\n",
|
737 |
+
"X_train = sequence.pad_sequences(X_train, maxlen=max_review_length)\n",
|
738 |
+
"X_test = sequence.pad_sequences(X_test, maxlen=max_review_length)\n",
|
739 |
+
"\n",
|
740 |
+
"# Convert data to binary (0/1) for perceptron\n",
|
741 |
+
"X_train_bin = np.where(X_train > 0, 1, 0)\n",
|
742 |
+
"X_test_bin = np.where(X_test > 0, 1, 0)\n",
|
743 |
+
"\n",
|
744 |
+
"# Initialize and train the Perceptron\n",
|
745 |
+
"bp = BackPropogation(learning_rate=0.1, epochs=5)\n",
|
746 |
+
"bp.fit(X_train_bin, y_train)\n",
|
747 |
+
"\n",
|
748 |
+
"# Evaluate on test data\n",
|
749 |
+
"predictions = bp.predict(X_test_bin)\n",
|
750 |
+
"accuracy = np.mean(predictions == y_test)\n",
|
751 |
+
"print(\"Accuracy: {:.2f}%\".format(accuracy * 100))"
|
752 |
+
]
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"cell_type": "code",
|
756 |
+
"execution_count": 3,
|
757 |
+
"metadata": {},
|
758 |
+
"outputs": [
|
759 |
+
{
|
760 |
+
"name": "stdout",
|
761 |
+
"output_type": "stream",
|
762 |
+
"text": [
|
763 |
+
"Confusion Matrix:\n",
|
764 |
+
"[[12390 110]\n",
|
765 |
+
" [12392 108]]\n",
|
766 |
+
"\n",
|
767 |
+
"Classification Report:\n",
|
768 |
+
" precision recall f1-score support\n",
|
769 |
+
"\n",
|
770 |
+
" 0 0.50 0.99 0.66 12500\n",
|
771 |
+
" 1 0.50 0.01 0.02 12500\n",
|
772 |
+
"\n",
|
773 |
+
" accuracy 0.50 25000\n",
|
774 |
+
" macro avg 0.50 0.50 0.34 25000\n",
|
775 |
+
"weighted avg 0.50 0.50 0.34 25000\n",
|
776 |
+
"\n"
|
777 |
+
]
|
778 |
+
}
|
779 |
+
],
|
780 |
+
"source": [
|
781 |
+
"# Calculate confusion matrix\n",
|
782 |
+
"cm = confusion_matrix(y_test, predictions)\n",
|
783 |
+
"\n",
|
784 |
+
"# Generate classification report\n",
|
785 |
+
"report = classification_report(y_test, predictions)\n",
|
786 |
+
"\n",
|
787 |
+
"# Display confusion matrix and classification report\n",
|
788 |
+
"print(\"Confusion Matrix:\")\n",
|
789 |
+
"print(cm)\n",
|
790 |
+
"print(\"\\nClassification Report:\")\n",
|
791 |
+
"print(report)"
|
792 |
+
]
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"cell_type": "code",
|
796 |
+
"execution_count": 4,
|
797 |
+
"metadata": {},
|
798 |
+
"outputs": [],
|
799 |
+
"source": [
|
800 |
+
"# Save the instance of the Perceptron class\n",
|
801 |
+
"with open('backprop_movie_model.pkl', 'wb') as file:\n",
|
802 |
+
" pickle.dump(bp, file)"
|
803 |
+
]
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"cell_type": "code",
|
807 |
+
"execution_count": 5,
|
808 |
+
"metadata": {},
|
809 |
+
"outputs": [],
|
810 |
+
"source": [
|
811 |
+
"def predict_sentiment_backprop(review, backprop_model, max_review_length):\n",
|
812 |
+
" word_index = imdb.get_word_index()\n",
|
813 |
+
" review = review.lower().split()\n",
|
814 |
+
" review = [word_index[word] if (word in word_index and word_index[word] < top_words) else 0 for word in review]\n",
|
815 |
+
" review_bin = np.where(np.array(review) > 0, 1, 0)\n",
|
816 |
+
" # Padding or truncating the review to match the perceptron's input size\n",
|
817 |
+
" review_bin_padded = np.pad(review_bin, (0, max_review_length - len(review_bin)), 'constant')\n",
|
818 |
+
" prediction = backprop_model.predict([review_bin_padded])\n",
|
819 |
+
" if prediction[0] == 1:\n",
|
820 |
+
" return \"Positive\"\n",
|
821 |
+
" else:\n",
|
822 |
+
" return \"Negative\"\n"
|
823 |
+
]
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"cell_type": "code",
|
827 |
+
"execution_count": 7,
|
828 |
+
"metadata": {},
|
829 |
+
"outputs": [
|
830 |
+
{
|
831 |
+
"name": "stdout",
|
832 |
+
"output_type": "stream",
|
833 |
+
"text": [
|
834 |
+
"Predicted Sentiment: Negative\n"
|
835 |
+
]
|
836 |
+
}
|
837 |
+
],
|
838 |
+
"source": [
|
839 |
+
"# Example usage after training the perceptron\n",
|
840 |
+
"example_review = \"This movie was fantastic! I loved every bit of it.\"\n",
|
841 |
+
"sentiment = predict_sentiment_backprop(example_review, bp, max_review_length)\n",
|
842 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
843 |
+
]
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"cell_type": "code",
|
847 |
+
"execution_count": 8,
|
848 |
+
"metadata": {},
|
849 |
+
"outputs": [
|
850 |
+
{
|
851 |
+
"name": "stdout",
|
852 |
+
"output_type": "stream",
|
853 |
+
"text": [
|
854 |
+
"Predicted Sentiment: Positive\n"
|
855 |
+
]
|
856 |
+
}
|
857 |
+
],
|
858 |
+
"source": [
|
859 |
+
"# Example usage after training the perceptron\n",
|
860 |
+
"example_review = \"This movie was bad!.\"\n",
|
861 |
+
"sentiment = predict_sentiment_backprop(example_review, bp, max_review_length)\n",
|
862 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
863 |
+
]
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"cell_type": "code",
|
867 |
+
"execution_count": 9,
|
868 |
+
"metadata": {},
|
869 |
+
"outputs": [
|
870 |
+
{
|
871 |
+
"name": "stdout",
|
872 |
+
"output_type": "stream",
|
873 |
+
"text": [
|
874 |
+
"Predicted Sentiment: Positive\n"
|
875 |
+
]
|
876 |
+
}
|
877 |
+
],
|
878 |
+
"source": [
|
879 |
+
"example_review = \"This movie was terrible. The acting was awful, and the plot was confusing.\"\n",
|
880 |
+
"sentiment = predict_sentiment_backprop(example_review, bp, max_review_length)\n",
|
881 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
882 |
+
]
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"cell_type": "code",
|
886 |
+
"execution_count": 10,
|
887 |
+
"metadata": {},
|
888 |
+
"outputs": [
|
889 |
+
{
|
890 |
+
"name": "stdout",
|
891 |
+
"output_type": "stream",
|
892 |
+
"text": [
|
893 |
+
"Predicted Sentiment: Positive\n"
|
894 |
+
]
|
895 |
+
}
|
896 |
+
],
|
897 |
+
"source": [
|
898 |
+
"example_review = \"This movie was fantastic and great\"\n",
|
899 |
+
"sentiment = predict_sentiment_backprop(example_review, bp, max_review_length)\n",
|
900 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
901 |
+
]
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"cell_type": "code",
|
905 |
+
"execution_count": null,
|
906 |
+
"metadata": {},
|
907 |
+
"outputs": [],
|
908 |
+
"source": []
|
909 |
+
}
|
910 |
+
],
|
911 |
+
"metadata": {
|
912 |
+
"kernelspec": {
|
913 |
+
"display_name": "DLENV",
|
914 |
+
"language": "python",
|
915 |
+
"name": "python3"
|
916 |
+
},
|
917 |
+
"language_info": {
|
918 |
+
"codemirror_mode": {
|
919 |
+
"name": "ipython",
|
920 |
+
"version": 3
|
921 |
+
},
|
922 |
+
"file_extension": ".py",
|
923 |
+
"mimetype": "text/x-python",
|
924 |
+
"name": "python",
|
925 |
+
"nbconvert_exporter": "python",
|
926 |
+
"pygments_lexer": "ipython3",
|
927 |
+
"version": "3.10.11"
|
928 |
+
}
|
929 |
+
},
|
930 |
+
"nbformat": 4,
|
931 |
+
"nbformat_minor": 2
|
932 |
+
}
|
perceptron_movie_model.ipynb
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"#### Movie Sentiment Analysis Model using Perceptron"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"from tensorflow.keras.datasets import imdb\n",
|
17 |
+
"import numpy as np\n",
|
18 |
+
"from tqdm import tqdm\n",
|
19 |
+
"from Perceptron import Perceptron\n",
|
20 |
+
"from tensorflow.keras.preprocessing import sequence\n",
|
21 |
+
"from sklearn.metrics import confusion_matrix, classification_report\n",
|
22 |
+
"import pickle"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 2,
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"name": "stderr",
|
32 |
+
"output_type": "stream",
|
33 |
+
"text": [
|
34 |
+
"100%|██████████| 5/5 [00:00<00:00, 20.08it/s]"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"name": "stdout",
|
39 |
+
"output_type": "stream",
|
40 |
+
"text": [
|
41 |
+
"Training Completed\n",
|
42 |
+
"Accuracy: 50.00%\n"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"name": "stderr",
|
47 |
+
"output_type": "stream",
|
48 |
+
"text": [
|
49 |
+
"\n"
|
50 |
+
]
|
51 |
+
}
|
52 |
+
],
|
53 |
+
"source": [
|
54 |
+
"# Load the IMDB dataset\n",
|
55 |
+
"top_words = 5000\n",
|
56 |
+
"(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words)\n",
|
57 |
+
"\n",
|
58 |
+
"# Truncate and pad input sequences\n",
|
59 |
+
"max_review_length = 500\n",
|
60 |
+
"X_train = sequence.pad_sequences(X_train, maxlen=max_review_length)\n",
|
61 |
+
"X_test = sequence.pad_sequences(X_test, maxlen=max_review_length)\n",
|
62 |
+
"\n",
|
63 |
+
"# Convert data to binary (0/1) for perceptron\n",
|
64 |
+
"X_train_bin = np.where(X_train > 0, 1, 0)\n",
|
65 |
+
"X_test_bin = np.where(X_test > 0, 1, 0)\n",
|
66 |
+
"\n",
|
67 |
+
"# Initialize and train the Perceptron\n",
|
68 |
+
"perceptron = Perceptron(learning_rate=0.1, epochs=5)\n",
|
69 |
+
"perceptron.fit(X_train_bin, y_train)\n",
|
70 |
+
"\n",
|
71 |
+
"# Evaluate on test data\n",
|
72 |
+
"predictions = perceptron.predict(X_test_bin)\n",
|
73 |
+
"accuracy = np.mean(predictions == y_test)\n",
|
74 |
+
"print(\"Accuracy: {:.2f}%\".format(accuracy * 100))"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 3,
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [
|
82 |
+
{
|
83 |
+
"name": "stdout",
|
84 |
+
"output_type": "stream",
|
85 |
+
"text": [
|
86 |
+
"Confusion Matrix:\n",
|
87 |
+
"[[ 0 12500]\n",
|
88 |
+
" [ 0 12500]]\n",
|
89 |
+
"\n",
|
90 |
+
"Classification Report:\n",
|
91 |
+
" precision recall f1-score support\n",
|
92 |
+
"\n",
|
93 |
+
" 0 0.00 0.00 0.00 12500\n",
|
94 |
+
" 1 0.50 1.00 0.67 12500\n",
|
95 |
+
"\n",
|
96 |
+
" accuracy 0.50 25000\n",
|
97 |
+
" macro avg 0.25 0.50 0.33 25000\n",
|
98 |
+
"weighted avg 0.25 0.50 0.33 25000\n",
|
99 |
+
"\n"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"name": "stderr",
|
104 |
+
"output_type": "stream",
|
105 |
+
"text": [
|
106 |
+
"d:\\STUDY\\Sem3\\deeplearning\\DLENV\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
107 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n",
|
108 |
+
"d:\\STUDY\\Sem3\\deeplearning\\DLENV\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
109 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n",
|
110 |
+
"d:\\STUDY\\Sem3\\deeplearning\\DLENV\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
111 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n"
|
112 |
+
]
|
113 |
+
}
|
114 |
+
],
|
115 |
+
"source": [
|
116 |
+
"# Calculate confusion matrix\n",
|
117 |
+
"cm = confusion_matrix(y_test, predictions)\n",
|
118 |
+
"\n",
|
119 |
+
"# Generate classification report\n",
|
120 |
+
"report = classification_report(y_test, predictions)\n",
|
121 |
+
"\n",
|
122 |
+
"# Display confusion matrix and classification report\n",
|
123 |
+
"print(\"Confusion Matrix:\")\n",
|
124 |
+
"print(cm)\n",
|
125 |
+
"print(\"\\nClassification Report:\")\n",
|
126 |
+
"print(report)"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": 4,
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [],
|
134 |
+
"source": [
|
135 |
+
"# Save the instance of the Perceptron class\n",
|
136 |
+
"with open('perceptron_movie_model.pkl', 'wb') as file:\n",
|
137 |
+
" pickle.dump(perceptron, file)"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"execution_count": 5,
|
143 |
+
"metadata": {},
|
144 |
+
"outputs": [],
|
145 |
+
"source": [
|
146 |
+
"def predict_sentiment_perceptron(review, perceptron_model, max_review_length):\n",
|
147 |
+
" word_index = imdb.get_word_index()\n",
|
148 |
+
" review = review.lower().split()\n",
|
149 |
+
" review = [word_index[word] if (word in word_index and word_index[word] < top_words) else 0 for word in review]\n",
|
150 |
+
" review_bin = np.where(np.array(review) > 0, 1, 0)\n",
|
151 |
+
" # Padding or truncating the review to match the perceptron's input size\n",
|
152 |
+
" review_bin_padded = np.pad(review_bin, (0, max_review_length - len(review_bin)), 'constant')\n",
|
153 |
+
" prediction = perceptron_model.predict([review_bin_padded])\n",
|
154 |
+
" if prediction[0] == 1:\n",
|
155 |
+
" return \"Positive\"\n",
|
156 |
+
" else:\n",
|
157 |
+
" return \"Negative\"\n"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"execution_count": 6,
|
163 |
+
"metadata": {},
|
164 |
+
"outputs": [
|
165 |
+
{
|
166 |
+
"name": "stdout",
|
167 |
+
"output_type": "stream",
|
168 |
+
"text": [
|
169 |
+
"Predicted Sentiment: Positive\n"
|
170 |
+
]
|
171 |
+
}
|
172 |
+
],
|
173 |
+
"source": [
|
174 |
+
"# Example usage after training the perceptron\n",
|
175 |
+
"example_review = \"This movie was fantastic! I loved every bit of it.\"\n",
|
176 |
+
"sentiment = predict_sentiment_perceptron(example_review, perceptron, max_review_length)\n",
|
177 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"execution_count": 7,
|
183 |
+
"metadata": {},
|
184 |
+
"outputs": [
|
185 |
+
{
|
186 |
+
"name": "stdout",
|
187 |
+
"output_type": "stream",
|
188 |
+
"text": [
|
189 |
+
"Predicted Sentiment: Positive\n"
|
190 |
+
]
|
191 |
+
}
|
192 |
+
],
|
193 |
+
"source": [
|
194 |
+
"# Example usage after training the perceptron\n",
|
195 |
+
"example_review = \"This movie was bad!.\"\n",
|
196 |
+
"sentiment = predict_sentiment_perceptron(example_review, perceptron, max_review_length)\n",
|
197 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"cell_type": "code",
|
202 |
+
"execution_count": 8,
|
203 |
+
"metadata": {},
|
204 |
+
"outputs": [
|
205 |
+
{
|
206 |
+
"name": "stdout",
|
207 |
+
"output_type": "stream",
|
208 |
+
"text": [
|
209 |
+
"Predicted Sentiment: Positive\n"
|
210 |
+
]
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"source": [
|
214 |
+
"example_review = \"This movie was terrible. The acting was awful, and the plot was confusing.\"\n",
|
215 |
+
"sentiment = predict_sentiment_perceptron(example_review, perceptron, max_review_length)\n",
|
216 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"cell_type": "code",
|
221 |
+
"execution_count": null,
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [],
|
224 |
+
"source": []
|
225 |
+
}
|
226 |
+
],
|
227 |
+
"metadata": {
|
228 |
+
"kernelspec": {
|
229 |
+
"display_name": "DLENV",
|
230 |
+
"language": "python",
|
231 |
+
"name": "python3"
|
232 |
+
},
|
233 |
+
"language_info": {
|
234 |
+
"codemirror_mode": {
|
235 |
+
"name": "ipython",
|
236 |
+
"version": 3
|
237 |
+
},
|
238 |
+
"file_extension": ".py",
|
239 |
+
"mimetype": "text/x-python",
|
240 |
+
"name": "python",
|
241 |
+
"nbconvert_exporter": "python",
|
242 |
+
"pygments_lexer": "ipython3",
|
243 |
+
"version": "3.10.11"
|
244 |
+
}
|
245 |
+
},
|
246 |
+
"nbformat": 4,
|
247 |
+
"nbformat_minor": 2
|
248 |
+
}
|
perceptron_movie_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:504ce3134f1dd442880c222e37d7cdd19ea8262ff433a844608f8a39508e362e
|
3 |
+
size 2264
|