Spaces:
Sleeping
Sleeping
Commit
·
ef54a66
1
Parent(s):
729003b
Update app.py
Browse files
app.py
CHANGED
@@ -48,6 +48,22 @@ def rnn_predict_message(input_text):
|
|
48 |
else:
|
49 |
return "Not spam"
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
53 |
# Main function for Streamlit app
|
@@ -90,6 +106,17 @@ def main():
|
|
90 |
st.write(f"The message is classified as: {prediction_result}")
|
91 |
else:
|
92 |
st.write("Please enter some text for prediction")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
|
95 |
elif task == "Movie Sentiment Analysis":
|
|
|
48 |
else:
|
49 |
return "Not spam"
|
50 |
|
51 |
+
# Load the saved LSTM model
|
52 |
+
lstm_smsspam_model=tf.keras.models.load_model('lstm_smsspam_model.h5')
|
53 |
+
# Load the saved tokenizer
|
54 |
+
with open('lstm_smsspam_tokenizer.pickle', 'rb') as handle:
|
55 |
+
lstm_smsspam_tokenizer = pickle.load(handle)
|
56 |
+
|
57 |
+
def lstm_predict_message(message):
|
58 |
+
maxlen=50
|
59 |
+
sequence = lstm_smsspam_tokenizer.texts_to_sequences([message])
|
60 |
+
sequence = tf.keras.preprocessing.sequence.pad_sequences(sequence, padding='post', maxlen=maxlen)
|
61 |
+
prediction = lstm_smsspam_model.predict(sequence)[0, 0]
|
62 |
+
if prediction > 0.5:
|
63 |
+
return 'Spam'
|
64 |
+
else:
|
65 |
+
return 'Not spam'
|
66 |
+
|
67 |
|
68 |
|
69 |
# Main function for Streamlit app
|
|
|
106 |
st.write(f"The message is classified as: {prediction_result}")
|
107 |
else:
|
108 |
st.write("Please enter some text for prediction")
|
109 |
+
|
110 |
+
elif model == "LSTM":
|
111 |
+
st.subheader("SMS Spam Detection")
|
112 |
+
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|
113 |
+
|
114 |
+
if st.button("Predict"):
|
115 |
+
if user_input:
|
116 |
+
prediction_result = lstm_predict_message(user_input)
|
117 |
+
st.write(f"The message is classified as: {prediction_result}")
|
118 |
+
else:
|
119 |
+
st.write("Please enter some text for prediction")
|
120 |
|
121 |
|
122 |
elif task == "Movie Sentiment Analysis":
|