Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,29 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
-
import pytesseract
|
6 |
import tempfile
|
7 |
import os
|
8 |
import subprocess
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
subprocess.run(['apt-get', 'install', '-y', 'tesseract-ocr'], check=True)
|
14 |
-
|
15 |
-
# Set Tesseract path explicitly
|
16 |
-
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
|
17 |
|
18 |
-
#
|
19 |
-
model = YOLO('best.pt')
|
20 |
img_dim = (640, 640)
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
|
|
|
24 |
# Resizing
|
25 |
image = image.resize(img_dim)
|
26 |
|
@@ -40,7 +43,7 @@ def predict(image, conf_threshold, iou_threshold):
|
|
40 |
annotated_image = results[0].plot()
|
41 |
|
42 |
# Perform OCR on detected objects
|
43 |
-
|
44 |
for box in results[0].boxes.xyxy.cpu().numpy():
|
45 |
x1, y1, x2, y2 = map(int, box)
|
46 |
cropped = image[y1:y2, x1:x2]
|
@@ -48,38 +51,36 @@ def predict(image, conf_threshold, iou_threshold):
|
|
48 |
# Skip if the cropped region is too small
|
49 |
if cropped.size == 0:
|
50 |
continue
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
59 |
|
60 |
-
if clean_text:
|
61 |
-
ocr_results.append(clean_text)
|
62 |
# Add text to annotated image
|
63 |
-
cv2.putText(annotated_image,
|
64 |
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
65 |
|
66 |
# Convert back to RGB for Gradio display
|
67 |
-
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
68 |
-
|
69 |
-
# Format OCR results
|
70 |
-
ocr_text = "Detected text:\n" + "\n".join(ocr_results) if ocr_results else "No text detected"
|
71 |
|
72 |
return annotated_image, ocr_text
|
|
|
73 |
|
74 |
# Create Gradio interface
|
75 |
with gr.Blocks() as demo:
|
76 |
-
gr.Markdown("#
|
77 |
with gr.Row():
|
78 |
with gr.Column():
|
79 |
input_image = gr.Image(label="Input Image", type="pil")
|
80 |
conf_slider = gr.Slider(0, 1, value=0.25, label="Confidence Threshold")
|
81 |
iou_slider = gr.Slider(0, 1, value=0.45, label="IOU Threshold")
|
82 |
-
submit_btn = gr.Button("
|
83 |
with gr.Column():
|
84 |
output_image = gr.Image(label="Detected Objects")
|
85 |
ocr_output = gr.Textbox(label="OCR Results")
|
|
|
1 |
+
from typing import get_args
|
2 |
+
from PIL import Image
|
3 |
import gradio as gr
|
4 |
from ultralytics import YOLO
|
5 |
import cv2
|
6 |
import numpy as np
|
|
|
7 |
import tempfile
|
8 |
import os
|
9 |
import subprocess
|
10 |
|
11 |
+
from fast_alpr import ALPR
|
12 |
+
from fast_alpr.default_detector import PlateDetectorModel
|
13 |
+
from fast_alpr.default_ocr import OcrModel
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Loading YOLO model
|
16 |
+
model = YOLO('best.pt')
|
17 |
img_dim = (640, 640)
|
18 |
|
19 |
+
# Default models for plate recognition
|
20 |
+
DETECTOR_MODELS = list(get_args(PlateDetectorModel))
|
21 |
+
OCR_MODELS = list(get_args(OcrModel))
|
22 |
+
# Put global OCR first
|
23 |
+
OCR_MODELS.remove("global-plates-mobile-vit-v2-model")
|
24 |
+
OCR_MODELS.insert(0, "global-plates-mobile-vit-v2-model")
|
25 |
|
26 |
+
def predict(image, conf_threshold, iou_threshold):
|
27 |
# Resizing
|
28 |
image = image.resize(img_dim)
|
29 |
|
|
|
43 |
annotated_image = results[0].plot()
|
44 |
|
45 |
# Perform OCR on detected objects
|
46 |
+
ocr_text= ""
|
47 |
for box in results[0].boxes.xyxy.cpu().numpy():
|
48 |
x1, y1, x2, y2 = map(int, box)
|
49 |
cropped = image[y1:y2, x1:x2]
|
|
|
51 |
# Skip if the cropped region is too small
|
52 |
if cropped.size == 0:
|
53 |
continue
|
54 |
+
# Apply detector for plate region
|
55 |
+
alpr = ALPR(detector_model=DETECTOR_MODELS[0], ocr_model=OCR_MODELS[0])
|
56 |
+
alpr_results = alpr.predict(cropped)
|
57 |
+
|
58 |
+
if alpr_results:
|
59 |
+
res = alpr_results[0]
|
60 |
+
# Access the detection and OCR attributes from ALPRResult
|
61 |
+
plate_text = res.ocr.text if res.ocr else "N/A"
|
62 |
+
plate_confidence = res.ocr.confidence if res.ocr else 0.0
|
63 |
+
ocr_text += f"- Detected Plate: {plate_text} with confidence {plate_confidence:.2f}\n"
|
64 |
|
|
|
|
|
65 |
# Add text to annotated image
|
66 |
+
cv2.putText(annotated_image, plate_text, (x1, y1-10),
|
67 |
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
68 |
|
69 |
# Convert back to RGB for Gradio display
|
70 |
+
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
71 |
|
72 |
return annotated_image, ocr_text
|
73 |
+
|
74 |
|
75 |
# Create Gradio interface
|
76 |
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("# MIA-Yolov8 for peruvian plate recognition")
|
78 |
with gr.Row():
|
79 |
with gr.Column():
|
80 |
input_image = gr.Image(label="Input Image", type="pil")
|
81 |
conf_slider = gr.Slider(0, 1, value=0.25, label="Confidence Threshold")
|
82 |
iou_slider = gr.Slider(0, 1, value=0.45, label="IOU Threshold")
|
83 |
+
submit_btn = gr.Button("Run model")
|
84 |
with gr.Column():
|
85 |
output_image = gr.Image(label="Detected Objects")
|
86 |
ocr_output = gr.Textbox(label="OCR Results")
|